{"title":"基于分布估计算法的认知智能体规则获取","authors":"T. Nishimura, H. Handa","doi":"10.1504/IJKESDP.2010.035905","DOIUrl":null,"url":null,"abstract":"Cognitive agents must be able to decide their actions based on their recognised states. In general, learning mechanisms are equipped for such agents in order to realise intelligent behaviours. In this paper, we propose a new estimation of distribution algorithms (EDAs) which can acquire effective rules for cognitive agents. Basic calculation procedure of the EDAs is that: 1) select better individuals; 2) estimate probabilistic models; 3) sample new individuals. In the proposed method, instead of the use of individuals, input-output records in episodes are directory used for estimating the probabilistic model by conditional random fields. Therefore, estimated probabilistic model can be regarded as policy so that new input-output records are generated by the interaction between the policy and environments. Computer simulations of probabilistic transition problems show the effectiveness of the proposed method.","PeriodicalId":347123,"journal":{"name":"Int. J. Knowl. Eng. Soft Data Paradigms","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rule acquisition for cognitive agents by using estimation of distribution algorithms\",\"authors\":\"T. Nishimura, H. Handa\",\"doi\":\"10.1504/IJKESDP.2010.035905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cognitive agents must be able to decide their actions based on their recognised states. In general, learning mechanisms are equipped for such agents in order to realise intelligent behaviours. In this paper, we propose a new estimation of distribution algorithms (EDAs) which can acquire effective rules for cognitive agents. Basic calculation procedure of the EDAs is that: 1) select better individuals; 2) estimate probabilistic models; 3) sample new individuals. In the proposed method, instead of the use of individuals, input-output records in episodes are directory used for estimating the probabilistic model by conditional random fields. Therefore, estimated probabilistic model can be regarded as policy so that new input-output records are generated by the interaction between the policy and environments. Computer simulations of probabilistic transition problems show the effectiveness of the proposed method.\",\"PeriodicalId\":347123,\"journal\":{\"name\":\"Int. J. Knowl. Eng. Soft Data Paradigms\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Knowl. Eng. Soft Data Paradigms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJKESDP.2010.035905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Eng. Soft Data Paradigms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJKESDP.2010.035905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rule acquisition for cognitive agents by using estimation of distribution algorithms
Cognitive agents must be able to decide their actions based on their recognised states. In general, learning mechanisms are equipped for such agents in order to realise intelligent behaviours. In this paper, we propose a new estimation of distribution algorithms (EDAs) which can acquire effective rules for cognitive agents. Basic calculation procedure of the EDAs is that: 1) select better individuals; 2) estimate probabilistic models; 3) sample new individuals. In the proposed method, instead of the use of individuals, input-output records in episodes are directory used for estimating the probabilistic model by conditional random fields. Therefore, estimated probabilistic model can be regarded as policy so that new input-output records are generated by the interaction between the policy and environments. Computer simulations of probabilistic transition problems show the effectiveness of the proposed method.