GARCH模型下的期权定价在泰国SET50指数中的应用

Somphorn Arunsingkarat, R. Costa, Masnita Misran, N. Phewchean
{"title":"GARCH模型下的期权定价在泰国SET50指数中的应用","authors":"Somphorn Arunsingkarat, R. Costa, Masnita Misran, N. Phewchean","doi":"10.37394/23206.2021.20.12","DOIUrl":null,"url":null,"abstract":"Variance changes over time and depends on historical data and previous variances; as a result, it is useful to use a GARCH process to model it. In this paper, we use the notion of Conditional Esscher transform to GARCH models to find the GARCH, EGARCH and GJR risk-neutral models. Subsequently, we apply these three models to obtain option prices for the Stock Exchange of Thailand and compare to the well-known Black-Scholes model. Findings suggest that most of the pricing options under GARCH model are the nearest to the actual prices for SET50 option contracts with both times to maturity of 30 days and 60 days. Key-Words: Option pricing, GARCH model, Stochastic assets. Received: March 1, 2021. Revised: March 24, 2021. Accepted: March 28, 2021. Published: April 2, 2021.","PeriodicalId":112268,"journal":{"name":"WSEAS Transactions on Mathematics archive","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Option Pricing Under GARCH Models Applied to the SET50 Index of Thailand\",\"authors\":\"Somphorn Arunsingkarat, R. Costa, Masnita Misran, N. Phewchean\",\"doi\":\"10.37394/23206.2021.20.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variance changes over time and depends on historical data and previous variances; as a result, it is useful to use a GARCH process to model it. In this paper, we use the notion of Conditional Esscher transform to GARCH models to find the GARCH, EGARCH and GJR risk-neutral models. Subsequently, we apply these three models to obtain option prices for the Stock Exchange of Thailand and compare to the well-known Black-Scholes model. Findings suggest that most of the pricing options under GARCH model are the nearest to the actual prices for SET50 option contracts with both times to maturity of 30 days and 60 days. Key-Words: Option pricing, GARCH model, Stochastic assets. Received: March 1, 2021. Revised: March 24, 2021. Accepted: March 28, 2021. Published: April 2, 2021.\",\"PeriodicalId\":112268,\"journal\":{\"name\":\"WSEAS Transactions on Mathematics archive\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Mathematics archive\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/23206.2021.20.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Mathematics archive","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23206.2021.20.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

方差随时间变化,取决于历史数据和以前的方差;因此,使用GARCH过程对其建模是有用的。在本文中,我们将条件Esscher变换的概念应用到GARCH模型中,找到了GARCH、EGARCH和GJR风险中性模型。随后,我们运用这三个模型得到了泰国证券交易所的期权价格,并与著名的Black-Scholes模型进行了比较。结果表明,对于30天和60天到期日的SET50期权合约,GARCH模型下的大多数定价期权最接近实际价格。关键词:期权定价,GARCH模型,随机资产收稿日期:2021年3月1日。修订日期:2021年3月24日。录用日期:2021年3月28日。发布日期:2021年4月2日。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Option Pricing Under GARCH Models Applied to the SET50 Index of Thailand
Variance changes over time and depends on historical data and previous variances; as a result, it is useful to use a GARCH process to model it. In this paper, we use the notion of Conditional Esscher transform to GARCH models to find the GARCH, EGARCH and GJR risk-neutral models. Subsequently, we apply these three models to obtain option prices for the Stock Exchange of Thailand and compare to the well-known Black-Scholes model. Findings suggest that most of the pricing options under GARCH model are the nearest to the actual prices for SET50 option contracts with both times to maturity of 30 days and 60 days. Key-Words: Option pricing, GARCH model, Stochastic assets. Received: March 1, 2021. Revised: March 24, 2021. Accepted: March 28, 2021. Published: April 2, 2021.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信