基于人工神经网络模型的智能电网网络物理安全上下文异常检测

A. Kosek
{"title":"基于人工神经网络模型的智能电网网络物理安全上下文异常检测","authors":"A. Kosek","doi":"10.1109/CPSRSG.2016.7684103","DOIUrl":null,"url":null,"abstract":"This paper presents a contextual anomaly detection method and its use in the discovery of malicious voltage control actions in the low voltage distribution grid. The model-based anomaly detection uses an artificial neural network model to identify a distributed energy resource's behaviour under control. An intrusion detection system observes distributed energy resource's behaviour, control actions and the power system impact, and is tested together with an ongoing voltage control attack in a co-simulation set-up. The simulation results obtained with a real photovoltaic rooftop power plant data show that the contextual anomaly detection performs on average 55% better in the control detection and over 56% better in the malicious control detection over the point anomaly detection.","PeriodicalId":263733,"journal":{"name":"2016 Joint Workshop on Cyber- Physical Security and Resilience in Smart Grids (CPSR-SG)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Contextual anomaly detection for cyber-physical security in Smart Grids based on an artificial neural network model\",\"authors\":\"A. Kosek\",\"doi\":\"10.1109/CPSRSG.2016.7684103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a contextual anomaly detection method and its use in the discovery of malicious voltage control actions in the low voltage distribution grid. The model-based anomaly detection uses an artificial neural network model to identify a distributed energy resource's behaviour under control. An intrusion detection system observes distributed energy resource's behaviour, control actions and the power system impact, and is tested together with an ongoing voltage control attack in a co-simulation set-up. The simulation results obtained with a real photovoltaic rooftop power plant data show that the contextual anomaly detection performs on average 55% better in the control detection and over 56% better in the malicious control detection over the point anomaly detection.\",\"PeriodicalId\":263733,\"journal\":{\"name\":\"2016 Joint Workshop on Cyber- Physical Security and Resilience in Smart Grids (CPSR-SG)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Joint Workshop on Cyber- Physical Security and Resilience in Smart Grids (CPSR-SG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CPSRSG.2016.7684103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Joint Workshop on Cyber- Physical Security and Resilience in Smart Grids (CPSR-SG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPSRSG.2016.7684103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

本文提出了一种上下文异常检测方法及其在低压配电网恶意电压控制行为发现中的应用。基于模型的异常检测采用人工神经网络模型来识别分布式能源在控制下的行为。入侵检测系统观察分布式能源的行为、控制动作和电力系统的影响,并在联合仿真设置中与正在进行的电压控制攻击一起进行测试。利用真实光伏屋顶电站数据进行的仿真结果表明,上下文异常检测在控制检测中平均优于55%,在恶意控制检测中平均优于56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contextual anomaly detection for cyber-physical security in Smart Grids based on an artificial neural network model
This paper presents a contextual anomaly detection method and its use in the discovery of malicious voltage control actions in the low voltage distribution grid. The model-based anomaly detection uses an artificial neural network model to identify a distributed energy resource's behaviour under control. An intrusion detection system observes distributed energy resource's behaviour, control actions and the power system impact, and is tested together with an ongoing voltage control attack in a co-simulation set-up. The simulation results obtained with a real photovoltaic rooftop power plant data show that the contextual anomaly detection performs on average 55% better in the control detection and over 56% better in the malicious control detection over the point anomaly detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信