快速多极方法的CPU与GPU混合实现与模型驱动调度

JeeWhan Choi, Aparna Chandramowlishwaran, Kamesh Madduri, R. Vuduc
{"title":"快速多极方法的CPU与GPU混合实现与模型驱动调度","authors":"JeeWhan Choi, Aparna Chandramowlishwaran, Kamesh Madduri, R. Vuduc","doi":"10.1145/2588768.2576787","DOIUrl":null,"url":null,"abstract":"This paper presents an optimized CPU--GPU hybrid implementation and a GPU performance model for the kernel-independent fast multipole method (FMM). We implement an optimized kernel-independent FMM for GPUs, and combine it with our previous CPU implementation to create a hybrid CPU+GPU FMM kernel. When compared to another highly optimized GPU implementation, our implementation achieves as much as a 1.9× speedup. We then extend our previous lower bound analyses of FMM for CPUs to include GPUs. This yields a model for predicting the execution times of the different phases of FMM. Using this information, we estimate the execution times of a set of static hybrid schedules on a given system, which allows us to automatically choose the schedule that yields the best performance. In the best case, we achieve a speedup of 1.5× compared to our GPU-only implementation, despite the large difference in computational powers of CPUs and GPUs. We comment on one consequence of having such performance models, which is to enable speculative predictions about FMM scalability on future systems.","PeriodicalId":394600,"journal":{"name":"Proceedings of Workshop on General Purpose Processing Using GPUs","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A CPU: GPU Hybrid Implementation and Model-Driven Scheduling of the Fast Multipole Method\",\"authors\":\"JeeWhan Choi, Aparna Chandramowlishwaran, Kamesh Madduri, R. Vuduc\",\"doi\":\"10.1145/2588768.2576787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an optimized CPU--GPU hybrid implementation and a GPU performance model for the kernel-independent fast multipole method (FMM). We implement an optimized kernel-independent FMM for GPUs, and combine it with our previous CPU implementation to create a hybrid CPU+GPU FMM kernel. When compared to another highly optimized GPU implementation, our implementation achieves as much as a 1.9× speedup. We then extend our previous lower bound analyses of FMM for CPUs to include GPUs. This yields a model for predicting the execution times of the different phases of FMM. Using this information, we estimate the execution times of a set of static hybrid schedules on a given system, which allows us to automatically choose the schedule that yields the best performance. In the best case, we achieve a speedup of 1.5× compared to our GPU-only implementation, despite the large difference in computational powers of CPUs and GPUs. We comment on one consequence of having such performance models, which is to enable speculative predictions about FMM scalability on future systems.\",\"PeriodicalId\":394600,\"journal\":{\"name\":\"Proceedings of Workshop on General Purpose Processing Using GPUs\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Workshop on General Purpose Processing Using GPUs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2588768.2576787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Workshop on General Purpose Processing Using GPUs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2588768.2576787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文提出了一种优化的CPU- GPU混合实现和GPU性能模型,用于与内核无关的快速多极方法(FMM)。我们为GPU实现了一个优化的与内核无关的FMM,并将其与之前的CPU实现相结合,创建了一个CPU+GPU的混合FMM内核。与另一个高度优化的GPU实现相比,我们的实现实现了1.9倍的加速。然后,我们扩展了之前对cpu FMM的下限分析,以包括gpu。这就产生了一个预测FMM不同阶段执行时间的模型。使用这些信息,我们估计给定系统上一组静态混合调度的执行时间,这使我们能够自动选择产生最佳性能的调度。在最好的情况下,尽管cpu和gpu的计算能力存在很大差异,但与仅使用gpu的实现相比,我们实现了1.5倍的加速。我们评论了拥有这种性能模型的一个结果,即能够推测未来系统上FMM的可伸缩性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A CPU: GPU Hybrid Implementation and Model-Driven Scheduling of the Fast Multipole Method
This paper presents an optimized CPU--GPU hybrid implementation and a GPU performance model for the kernel-independent fast multipole method (FMM). We implement an optimized kernel-independent FMM for GPUs, and combine it with our previous CPU implementation to create a hybrid CPU+GPU FMM kernel. When compared to another highly optimized GPU implementation, our implementation achieves as much as a 1.9× speedup. We then extend our previous lower bound analyses of FMM for CPUs to include GPUs. This yields a model for predicting the execution times of the different phases of FMM. Using this information, we estimate the execution times of a set of static hybrid schedules on a given system, which allows us to automatically choose the schedule that yields the best performance. In the best case, we achieve a speedup of 1.5× compared to our GPU-only implementation, despite the large difference in computational powers of CPUs and GPUs. We comment on one consequence of having such performance models, which is to enable speculative predictions about FMM scalability on future systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信