通过软数据分区自适应灵活的键值存储

B. Hong, Yongkee Kwon, Jung Ho Ahn, John Kim
{"title":"通过软数据分区自适应灵活的键值存储","authors":"B. Hong, Yongkee Kwon, Jung Ho Ahn, John Kim","doi":"10.1109/ICCD.2016.7753293","DOIUrl":null,"url":null,"abstract":"Key-value stores such as Memcached have become widely used by cloud and web-service providers. While there has been a significant amount of research done on improving the absolute performance of key-value stores, this work proposes an adaptive and a flexible approach to key-value stores. We first propose soft data partitioning that divides memory into multiple groups within a single node, or a single server process, to enable scale-up of key-value stores, while providing NUMA locality and an adaptive approach that can reduce overall request miss rate. The soft-partitioning enables a flexible Memcached server implementation in a NUMA system through NUMA-aware allocation as well as power-efficient NUMA server operation by migrating frequently accessed key-value pairs among the groups. We also propose an adaptive replacement policy within Memcached server that compares miss rates across the different memory groups to determine a more optimal replacement policy. To overcome the limitation of partitioning, we propose Group Auto-Balancing (GAB) where memory allocation from the different groups can be borrowed to minimize miss rate. Our results improve Memcached throughput by 12.9%, on average, over previously proposed MemC3 algorithm (up to 3.1× for write intensive workloads) while the adaptive replacement policy shows the lowest miss rate on adversarial access patterns.","PeriodicalId":297899,"journal":{"name":"2016 IEEE 34th International Conference on Computer Design (ICCD)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive and flexible key-value stores through soft data partitioning\",\"authors\":\"B. Hong, Yongkee Kwon, Jung Ho Ahn, John Kim\",\"doi\":\"10.1109/ICCD.2016.7753293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Key-value stores such as Memcached have become widely used by cloud and web-service providers. While there has been a significant amount of research done on improving the absolute performance of key-value stores, this work proposes an adaptive and a flexible approach to key-value stores. We first propose soft data partitioning that divides memory into multiple groups within a single node, or a single server process, to enable scale-up of key-value stores, while providing NUMA locality and an adaptive approach that can reduce overall request miss rate. The soft-partitioning enables a flexible Memcached server implementation in a NUMA system through NUMA-aware allocation as well as power-efficient NUMA server operation by migrating frequently accessed key-value pairs among the groups. We also propose an adaptive replacement policy within Memcached server that compares miss rates across the different memory groups to determine a more optimal replacement policy. To overcome the limitation of partitioning, we propose Group Auto-Balancing (GAB) where memory allocation from the different groups can be borrowed to minimize miss rate. Our results improve Memcached throughput by 12.9%, on average, over previously proposed MemC3 algorithm (up to 3.1× for write intensive workloads) while the adaptive replacement policy shows the lowest miss rate on adversarial access patterns.\",\"PeriodicalId\":297899,\"journal\":{\"name\":\"2016 IEEE 34th International Conference on Computer Design (ICCD)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 34th International Conference on Computer Design (ICCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2016.7753293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 34th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2016.7753293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

像Memcached这样的键值存储已经被云和web服务提供商广泛使用。虽然已经有大量关于提高键值存储绝对性能的研究,但这项工作提出了一种自适应和灵活的键值存储方法。我们首先提出软数据分区,将内存在单个节点或单个服务器进程中划分为多个组,以支持键值存储的扩展,同时提供NUMA局域性和自适应方法,可以降低总体请求失误率。软分区支持NUMA系统中灵活的Memcached服务器实现,通过在组之间迁移频繁访问的键值对,实现NUMA感知的分配和节能的NUMA服务器操作。我们还提出了Memcached服务器内的自适应替换策略,该策略比较不同内存组之间的缺失率,以确定更优的替换策略。为了克服分区的限制,我们提出了组自动平衡(Group Auto-Balancing, GAB),其中可以借用不同组的内存分配来最小化丢失率。我们的研究结果比之前提出的MemC3算法平均提高了12.9%的Memcached吞吐量(对于写密集型工作负载,提高了3.1倍),而自适应替换策略在对抗性访问模式下显示了最低的失误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive and flexible key-value stores through soft data partitioning
Key-value stores such as Memcached have become widely used by cloud and web-service providers. While there has been a significant amount of research done on improving the absolute performance of key-value stores, this work proposes an adaptive and a flexible approach to key-value stores. We first propose soft data partitioning that divides memory into multiple groups within a single node, or a single server process, to enable scale-up of key-value stores, while providing NUMA locality and an adaptive approach that can reduce overall request miss rate. The soft-partitioning enables a flexible Memcached server implementation in a NUMA system through NUMA-aware allocation as well as power-efficient NUMA server operation by migrating frequently accessed key-value pairs among the groups. We also propose an adaptive replacement policy within Memcached server that compares miss rates across the different memory groups to determine a more optimal replacement policy. To overcome the limitation of partitioning, we propose Group Auto-Balancing (GAB) where memory allocation from the different groups can be borrowed to minimize miss rate. Our results improve Memcached throughput by 12.9%, on average, over previously proposed MemC3 algorithm (up to 3.1× for write intensive workloads) while the adaptive replacement policy shows the lowest miss rate on adversarial access patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信