多普勒容忍雷达检波器的噪声波形学习

Kyle P. Wensell, James Zhou, A. Haimovich, Evan A. Young, Lam T. Vo
{"title":"多普勒容忍雷达检波器的噪声波形学习","authors":"Kyle P. Wensell, James Zhou, A. Haimovich, Evan A. Young, Lam T. Vo","doi":"10.1109/CISS56502.2023.10089751","DOIUrl":null,"url":null,"abstract":"This work analyzes neural network learning as it pertains to noise waveform radar detectors. The concept of noise waveform radar is explored, and the core issue of Doppler tolerance is addressed. In order for the network to successfully learn the noise waveform, a pre-processing step of phase alignment is performed on the data to allow the neural network to establish a pattern. The training data is then augmented with Dopplershifted waveforms, such that this Doppler shift appears in the phase-aligned data. We demonstrate that this pre-processing and training scheme successfully allows for the detector to learn Doppler intolerant waveforms such as the noise waveforms.","PeriodicalId":243775,"journal":{"name":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning of Doppler Tolerant Radar Detectors for Noise Waveforms\",\"authors\":\"Kyle P. Wensell, James Zhou, A. Haimovich, Evan A. Young, Lam T. Vo\",\"doi\":\"10.1109/CISS56502.2023.10089751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work analyzes neural network learning as it pertains to noise waveform radar detectors. The concept of noise waveform radar is explored, and the core issue of Doppler tolerance is addressed. In order for the network to successfully learn the noise waveform, a pre-processing step of phase alignment is performed on the data to allow the neural network to establish a pattern. The training data is then augmented with Dopplershifted waveforms, such that this Doppler shift appears in the phase-aligned data. We demonstrate that this pre-processing and training scheme successfully allows for the detector to learn Doppler intolerant waveforms such as the noise waveforms.\",\"PeriodicalId\":243775,\"journal\":{\"name\":\"2023 57th Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"166 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 57th Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS56502.2023.10089751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS56502.2023.10089751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作分析了神经网络学习,因为它涉及到噪声波形雷达探测器。探讨了噪声波形雷达的概念,解决了多普勒容差的核心问题。为了使网络能够成功地学习噪声波形,对数据进行相位对准预处理步骤,使神经网络能够建立模式。然后用多普勒移位波形增强训练数据,这样多普勒移位就出现在相位对准数据中。我们证明,这种预处理和训练方案成功地允许检测器学习多普勒不容忍波形,如噪声波形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning of Doppler Tolerant Radar Detectors for Noise Waveforms
This work analyzes neural network learning as it pertains to noise waveform radar detectors. The concept of noise waveform radar is explored, and the core issue of Doppler tolerance is addressed. In order for the network to successfully learn the noise waveform, a pre-processing step of phase alignment is performed on the data to allow the neural network to establish a pattern. The training data is then augmented with Dopplershifted waveforms, such that this Doppler shift appears in the phase-aligned data. We demonstrate that this pre-processing and training scheme successfully allows for the detector to learn Doppler intolerant waveforms such as the noise waveforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信