基于深度学习的钢材表面缺陷分类

Mustafa Mert Tunal, A. Yıldız, Tuna Çakar
{"title":"基于深度学习的钢材表面缺陷分类","authors":"Mustafa Mert Tunal, A. Yıldız, Tuna Çakar","doi":"10.1109/UBMK55850.2022.9919470","DOIUrl":null,"url":null,"abstract":"Deep learning and image processing methods have taken place in many parts of our lives, as well as in the quality control stages of production lines. The aim of this study is to train and use a deep learning model to improve quality management using limited data and computing power. To achieve that, deep learning for quality control models were trained by classifying six different steel surface defect images in the NEU-DET dataset. Xception, ResNetV2 152, VGG19 and InceptionV3 architectures were used to train the model. High accuracy was obtained with both Xception and ResNetV2 152.","PeriodicalId":417604,"journal":{"name":"2022 7th International Conference on Computer Science and Engineering (UBMK)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steel Surface Defect Classification Via Deep Learning\",\"authors\":\"Mustafa Mert Tunal, A. Yıldız, Tuna Çakar\",\"doi\":\"10.1109/UBMK55850.2022.9919470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning and image processing methods have taken place in many parts of our lives, as well as in the quality control stages of production lines. The aim of this study is to train and use a deep learning model to improve quality management using limited data and computing power. To achieve that, deep learning for quality control models were trained by classifying six different steel surface defect images in the NEU-DET dataset. Xception, ResNetV2 152, VGG19 and InceptionV3 architectures were used to train the model. High accuracy was obtained with both Xception and ResNetV2 152.\",\"PeriodicalId\":417604,\"journal\":{\"name\":\"2022 7th International Conference on Computer Science and Engineering (UBMK)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Conference on Computer Science and Engineering (UBMK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UBMK55850.2022.9919470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK55850.2022.9919470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习和图像处理方法已经出现在我们生活的许多方面,以及生产线的质量控制阶段。本研究的目的是训练和使用一个深度学习模型,利用有限的数据和计算能力来提高质量管理。为了实现这一目标,通过对NEU-DET数据集中的六种不同的钢表面缺陷图像进行分类,训练了质量控制模型的深度学习。Xception、ResNetV2 152、VGG19和InceptionV3架构用于训练模型。Xception和ResNetV2 152均获得了较高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Steel Surface Defect Classification Via Deep Learning
Deep learning and image processing methods have taken place in many parts of our lives, as well as in the quality control stages of production lines. The aim of this study is to train and use a deep learning model to improve quality management using limited data and computing power. To achieve that, deep learning for quality control models were trained by classifying six different steel surface defect images in the NEU-DET dataset. Xception, ResNetV2 152, VGG19 and InceptionV3 architectures were used to train the model. High accuracy was obtained with both Xception and ResNetV2 152.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信