A. Arauzo-Azofra, José Luis Aznarte-Mellado, J. M. Benítez
{"title":"分类中个体特征评价器与特征选择裁剪标准的实证研究","authors":"A. Arauzo-Azofra, José Luis Aznarte-Mellado, J. M. Benítez","doi":"10.1109/ISDA.2009.175","DOIUrl":null,"url":null,"abstract":"The use of feature selection can improve accuracy, efficiency, applicability and understandability of a learning process and its resulting model. For this reason, many methods of automatic feature selection have been developed. By using a modularization of feature selection process, this paper evaluates a wide spectrum of these methods. The methods considered are created by combination of different selection criteria and individual feature evaluation modules. These methods are commonly used because of their low running time. After carrying out a thorough empirical study the most interesting methods are identified and some recommendations about which feature selection method should be used under different conditions are provided.","PeriodicalId":330324,"journal":{"name":"2009 Ninth International Conference on Intelligent Systems Design and Applications","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Empirical Study of Individual Feature Evaluators and Cutting Criteria for Feature Selection in Classification\",\"authors\":\"A. Arauzo-Azofra, José Luis Aznarte-Mellado, J. M. Benítez\",\"doi\":\"10.1109/ISDA.2009.175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of feature selection can improve accuracy, efficiency, applicability and understandability of a learning process and its resulting model. For this reason, many methods of automatic feature selection have been developed. By using a modularization of feature selection process, this paper evaluates a wide spectrum of these methods. The methods considered are created by combination of different selection criteria and individual feature evaluation modules. These methods are commonly used because of their low running time. After carrying out a thorough empirical study the most interesting methods are identified and some recommendations about which feature selection method should be used under different conditions are provided.\",\"PeriodicalId\":330324,\"journal\":{\"name\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2009.175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2009.175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Empirical Study of Individual Feature Evaluators and Cutting Criteria for Feature Selection in Classification
The use of feature selection can improve accuracy, efficiency, applicability and understandability of a learning process and its resulting model. For this reason, many methods of automatic feature selection have been developed. By using a modularization of feature selection process, this paper evaluates a wide spectrum of these methods. The methods considered are created by combination of different selection criteria and individual feature evaluation modules. These methods are commonly used because of their low running time. After carrying out a thorough empirical study the most interesting methods are identified and some recommendations about which feature selection method should be used under different conditions are provided.