Jaspreet Singh, Jaswinder Singh, K. Paliwal, Andrew Busch, Yaoqi Zhou
{"title":"SPOT-1D2:利用高序列同一性训练集和循环和残差卷积神经网络集成改进蛋白质二级结构预测","authors":"Jaspreet Singh, Jaswinder Singh, K. Paliwal, Andrew Busch, Yaoqi Zhou","doi":"10.1109/CIBCB49929.2021.9562849","DOIUrl":null,"url":null,"abstract":"Protein secondary structure prediction has been a long-standing problem in computational biology. Recent advances in deep contextual learning have enabled its performance in three-state prediction closer to the theoretical limit at 88–90%. Here, we showed that a large training set with 95% sequence identity cutoff can improve prediction of secondary structures even for those unrelated test sequences (<25% sequence identity cutoff) compared to the use of a non-redundant training dataset with 25% sequence identity cutoff. The three-state prediction edges closer to an accuracy of 87% and eight-state at 76%.The resulting model called SPOT-1D2 is freely available to academic users at https://github.com/jas-preet/SPOT-1D2.","PeriodicalId":163387,"journal":{"name":"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SPOT-1D2: Improving Protein Secondary Structure Prediction using High Sequence Identity Training Set and an Ensemble of Recurrent and Residual-convolutional Neural Networks\",\"authors\":\"Jaspreet Singh, Jaswinder Singh, K. Paliwal, Andrew Busch, Yaoqi Zhou\",\"doi\":\"10.1109/CIBCB49929.2021.9562849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protein secondary structure prediction has been a long-standing problem in computational biology. Recent advances in deep contextual learning have enabled its performance in three-state prediction closer to the theoretical limit at 88–90%. Here, we showed that a large training set with 95% sequence identity cutoff can improve prediction of secondary structures even for those unrelated test sequences (<25% sequence identity cutoff) compared to the use of a non-redundant training dataset with 25% sequence identity cutoff. The three-state prediction edges closer to an accuracy of 87% and eight-state at 76%.The resulting model called SPOT-1D2 is freely available to academic users at https://github.com/jas-preet/SPOT-1D2.\",\"PeriodicalId\":163387,\"journal\":{\"name\":\"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB49929.2021.9562849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB49929.2021.9562849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SPOT-1D2: Improving Protein Secondary Structure Prediction using High Sequence Identity Training Set and an Ensemble of Recurrent and Residual-convolutional Neural Networks
Protein secondary structure prediction has been a long-standing problem in computational biology. Recent advances in deep contextual learning have enabled its performance in three-state prediction closer to the theoretical limit at 88–90%. Here, we showed that a large training set with 95% sequence identity cutoff can improve prediction of secondary structures even for those unrelated test sequences (<25% sequence identity cutoff) compared to the use of a non-redundant training dataset with 25% sequence identity cutoff. The three-state prediction edges closer to an accuracy of 87% and eight-state at 76%.The resulting model called SPOT-1D2 is freely available to academic users at https://github.com/jas-preet/SPOT-1D2.