基于传感器数据的智能制造系统级异常预测

Jianwu Wang, Chen Liu, Meiling Zhu, Pei Guo, Yapeng Hu
{"title":"基于传感器数据的智能制造系统级异常预测","authors":"Jianwu Wang, Chen Liu, Meiling Zhu, Pei Guo, Yapeng Hu","doi":"10.1109/BigDataCongress.2018.00028","DOIUrl":null,"url":null,"abstract":"With the popularity of Supervisory Information System (SIS), Supervisory Control and Data Acquisition (SCADA) system and Internet of Things (IoT) sensors, we can easily obtain abundant sensor data in manufacturing. We could save manufacturing maintenance costs and prevent further damages if we can accurately predict system anomalies from the sensor data. Yet learning from individual sensors often cannot directly determine whether the system will have anomaly because each sensor only measures a partial state of a big system. By detecting events across sensors collectively and their temporal dependencies, this paper proposes a new system-level anomaly prediction framework by mining anomaly dependency graph from sensor data. The advantages of the approach include explainability, collective prediction and temporal sensitivity. We applied our approach with a real-world power plant dataset to evaluate its feasibility.","PeriodicalId":177250,"journal":{"name":"2018 IEEE International Congress on Big Data (BigData Congress)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Sensor Data Based System-Level Anomaly Prediction for Smart Manufacturing\",\"authors\":\"Jianwu Wang, Chen Liu, Meiling Zhu, Pei Guo, Yapeng Hu\",\"doi\":\"10.1109/BigDataCongress.2018.00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the popularity of Supervisory Information System (SIS), Supervisory Control and Data Acquisition (SCADA) system and Internet of Things (IoT) sensors, we can easily obtain abundant sensor data in manufacturing. We could save manufacturing maintenance costs and prevent further damages if we can accurately predict system anomalies from the sensor data. Yet learning from individual sensors often cannot directly determine whether the system will have anomaly because each sensor only measures a partial state of a big system. By detecting events across sensors collectively and their temporal dependencies, this paper proposes a new system-level anomaly prediction framework by mining anomaly dependency graph from sensor data. The advantages of the approach include explainability, collective prediction and temporal sensitivity. We applied our approach with a real-world power plant dataset to evaluate its feasibility.\",\"PeriodicalId\":177250,\"journal\":{\"name\":\"2018 IEEE International Congress on Big Data (BigData Congress)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Congress on Big Data (BigData Congress)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BigDataCongress.2018.00028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Congress on Big Data (BigData Congress)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigDataCongress.2018.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

随着监控信息系统(SIS)、监控与数据采集系统(SCADA)和物联网(IoT)传感器的普及,我们可以很容易地在制造业中获得丰富的传感器数据。如果我们能够从传感器数据中准确预测系统异常,我们可以节省制造维护成本并防止进一步的损坏。然而,从单个传感器中学习往往不能直接确定系统是否会有异常,因为每个传感器只测量一个大系统的部分状态。本文提出了一种新的系统级异常预测框架,通过从传感器数据中挖掘异常依赖图,对传感器事件及其时间依赖性进行整体检测。该方法的优点包括可解释性、集体预测性和时间敏感性。我们将我们的方法应用于真实世界的发电厂数据集来评估其可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensor Data Based System-Level Anomaly Prediction for Smart Manufacturing
With the popularity of Supervisory Information System (SIS), Supervisory Control and Data Acquisition (SCADA) system and Internet of Things (IoT) sensors, we can easily obtain abundant sensor data in manufacturing. We could save manufacturing maintenance costs and prevent further damages if we can accurately predict system anomalies from the sensor data. Yet learning from individual sensors often cannot directly determine whether the system will have anomaly because each sensor only measures a partial state of a big system. By detecting events across sensors collectively and their temporal dependencies, this paper proposes a new system-level anomaly prediction framework by mining anomaly dependency graph from sensor data. The advantages of the approach include explainability, collective prediction and temporal sensitivity. We applied our approach with a real-world power plant dataset to evaluate its feasibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信