{"title":"基于决策依赖数据的鞍点在线跟踪","authors":"Killian Wood, E. Dall’Anese","doi":"10.48550/arXiv.2212.02693","DOIUrl":null,"url":null,"abstract":"In this work, we consider a time-varying stochastic saddle point problem in which the objective is revealed sequentially, and the data distribution depends on the decision variables. Problems of this type express the distributional dependence via a distributional map, and are known to have two distinct types of solutions--saddle points and equilibrium points. We demonstrate that, under suitable conditions, online primal-dual type algorithms are capable of tracking equilibrium points. In contrast, since computing closed-form gradient of the objective requires knowledge of the distributional map, we offer an online stochastic primal-dual algorithm for tracking equilibrium trajectories. We provide bounds in expectation and in high probability, with the latter leveraging a sub-Weibull model for the gradient error. We illustrate our results on an electric vehicle charging problem where responsiveness to prices follows a location-scale family based distributional map.","PeriodicalId":268449,"journal":{"name":"Conference on Learning for Dynamics & Control","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Online Saddle Point Tracking with Decision-Dependent Data\",\"authors\":\"Killian Wood, E. Dall’Anese\",\"doi\":\"10.48550/arXiv.2212.02693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we consider a time-varying stochastic saddle point problem in which the objective is revealed sequentially, and the data distribution depends on the decision variables. Problems of this type express the distributional dependence via a distributional map, and are known to have two distinct types of solutions--saddle points and equilibrium points. We demonstrate that, under suitable conditions, online primal-dual type algorithms are capable of tracking equilibrium points. In contrast, since computing closed-form gradient of the objective requires knowledge of the distributional map, we offer an online stochastic primal-dual algorithm for tracking equilibrium trajectories. We provide bounds in expectation and in high probability, with the latter leveraging a sub-Weibull model for the gradient error. We illustrate our results on an electric vehicle charging problem where responsiveness to prices follows a location-scale family based distributional map.\",\"PeriodicalId\":268449,\"journal\":{\"name\":\"Conference on Learning for Dynamics & Control\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Learning for Dynamics & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2212.02693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Learning for Dynamics & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.02693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Online Saddle Point Tracking with Decision-Dependent Data
In this work, we consider a time-varying stochastic saddle point problem in which the objective is revealed sequentially, and the data distribution depends on the decision variables. Problems of this type express the distributional dependence via a distributional map, and are known to have two distinct types of solutions--saddle points and equilibrium points. We demonstrate that, under suitable conditions, online primal-dual type algorithms are capable of tracking equilibrium points. In contrast, since computing closed-form gradient of the objective requires knowledge of the distributional map, we offer an online stochastic primal-dual algorithm for tracking equilibrium trajectories. We provide bounds in expectation and in high probability, with the latter leveraging a sub-Weibull model for the gradient error. We illustrate our results on an electric vehicle charging problem where responsiveness to prices follows a location-scale family based distributional map.