基于决策依赖数据的鞍点在线跟踪

Killian Wood, E. Dall’Anese
{"title":"基于决策依赖数据的鞍点在线跟踪","authors":"Killian Wood, E. Dall’Anese","doi":"10.48550/arXiv.2212.02693","DOIUrl":null,"url":null,"abstract":"In this work, we consider a time-varying stochastic saddle point problem in which the objective is revealed sequentially, and the data distribution depends on the decision variables. Problems of this type express the distributional dependence via a distributional map, and are known to have two distinct types of solutions--saddle points and equilibrium points. We demonstrate that, under suitable conditions, online primal-dual type algorithms are capable of tracking equilibrium points. In contrast, since computing closed-form gradient of the objective requires knowledge of the distributional map, we offer an online stochastic primal-dual algorithm for tracking equilibrium trajectories. We provide bounds in expectation and in high probability, with the latter leveraging a sub-Weibull model for the gradient error. We illustrate our results on an electric vehicle charging problem where responsiveness to prices follows a location-scale family based distributional map.","PeriodicalId":268449,"journal":{"name":"Conference on Learning for Dynamics & Control","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Online Saddle Point Tracking with Decision-Dependent Data\",\"authors\":\"Killian Wood, E. Dall’Anese\",\"doi\":\"10.48550/arXiv.2212.02693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we consider a time-varying stochastic saddle point problem in which the objective is revealed sequentially, and the data distribution depends on the decision variables. Problems of this type express the distributional dependence via a distributional map, and are known to have two distinct types of solutions--saddle points and equilibrium points. We demonstrate that, under suitable conditions, online primal-dual type algorithms are capable of tracking equilibrium points. In contrast, since computing closed-form gradient of the objective requires knowledge of the distributional map, we offer an online stochastic primal-dual algorithm for tracking equilibrium trajectories. We provide bounds in expectation and in high probability, with the latter leveraging a sub-Weibull model for the gradient error. We illustrate our results on an electric vehicle charging problem where responsiveness to prices follows a location-scale family based distributional map.\",\"PeriodicalId\":268449,\"journal\":{\"name\":\"Conference on Learning for Dynamics & Control\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Learning for Dynamics & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2212.02693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Learning for Dynamics & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.02693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了一个时变随机鞍点问题,该问题的目标是顺序揭示的,数据分布依赖于决策变量。这种类型的问题通过分布图来表达分布依赖性,并且已知有两种不同类型的解——鞍点和平衡点。我们证明,在适当的条件下,在线原始对偶型算法能够跟踪平衡点。相比之下,由于计算目标的封闭形式梯度需要了解分布图,因此我们提供了一种在线随机原始对偶算法来跟踪平衡轨迹。我们提供了期望和高概率的边界,后者利用了梯度误差的子威布尔模型。我们在电动汽车充电问题上说明了我们的结果,其中对价格的响应遵循基于位置尺度的家庭分布地图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Saddle Point Tracking with Decision-Dependent Data
In this work, we consider a time-varying stochastic saddle point problem in which the objective is revealed sequentially, and the data distribution depends on the decision variables. Problems of this type express the distributional dependence via a distributional map, and are known to have two distinct types of solutions--saddle points and equilibrium points. We demonstrate that, under suitable conditions, online primal-dual type algorithms are capable of tracking equilibrium points. In contrast, since computing closed-form gradient of the objective requires knowledge of the distributional map, we offer an online stochastic primal-dual algorithm for tracking equilibrium trajectories. We provide bounds in expectation and in high probability, with the latter leveraging a sub-Weibull model for the gradient error. We illustrate our results on an electric vehicle charging problem where responsiveness to prices follows a location-scale family based distributional map.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信