近可分性的最优多重描述源代码

H. Feng
{"title":"近可分性的最优多重描述源代码","authors":"H. Feng","doi":"10.1109/ISIT.2005.1523655","DOIUrl":null,"url":null,"abstract":"In this paper, we first present new upper and lower bounds for the rate loss of multiple description source codes (MDSCs). For a two-description MDSC (2DSC), the rate loss of description i with distortion D<sub>i</sub> is L<sub>i</sub> = R<sub>i</sub> $R(D<sub>i </sub>), i isin {1, 2}, where R<sub>i</sub> is the rate of the ith description; the joint rate loss associated with decoding the two descriptions together to achieve central distortion D<sub>0</sub> is L <sub>0</sub> = R<sub>1</sub> + R<sub>2</sub> - R(D<sub>0</sub>). We show that given any memoryless source with variance sigma<sup>2</sup> and mean squared error distortion measure, for any optimal 2DSC, (a) 0 les L<sub>0</sub> les 0.8802 if D<sub>0</sub> les D<sub>1</sub> + D<sub>2</sub> - sigma<sup>2</sup>; (b) 0 les L<sub>1</sub>, L<sub>2 </sub> les 0.4401 if D<sub>0</sub> ges (1/D<sub>1</sub> + 1/D<sub>2 </sub> - 1/sigma<sup>2</sup>)<sup>-1</sup>; (c) 0 les L<sub>1</sub>, L<sub>2</sub> les 0.3802 and R(max{D<sub>1</sub>, D<sub>2</sub>}) - 1 les L<sub>0</sub> les R(max{D<sub>1</sub>, D<sub>2</sub>}) + 0.3802 otherwise. We also present a tighter bound on the distance between the El Gamal-Cover inner bound and the achievable region. In addition, these new bounds, which are easy to compute, inspire new designs of low-complexity near-optimal 2DSC. In essence, we demonstrate that any optimal 2DSC can be nearly separated into a multi-resolution source code and a traditional single-resolution code, and the resulting rate penalty for each description is less than 0.6901 bit/sample for general sources and less than 0.5 bit/sample for successively refinable sources","PeriodicalId":166130,"journal":{"name":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Near separability of optimal multiple description source codes\",\"authors\":\"H. Feng\",\"doi\":\"10.1109/ISIT.2005.1523655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we first present new upper and lower bounds for the rate loss of multiple description source codes (MDSCs). For a two-description MDSC (2DSC), the rate loss of description i with distortion D<sub>i</sub> is L<sub>i</sub> = R<sub>i</sub> $R(D<sub>i </sub>), i isin {1, 2}, where R<sub>i</sub> is the rate of the ith description; the joint rate loss associated with decoding the two descriptions together to achieve central distortion D<sub>0</sub> is L <sub>0</sub> = R<sub>1</sub> + R<sub>2</sub> - R(D<sub>0</sub>). We show that given any memoryless source with variance sigma<sup>2</sup> and mean squared error distortion measure, for any optimal 2DSC, (a) 0 les L<sub>0</sub> les 0.8802 if D<sub>0</sub> les D<sub>1</sub> + D<sub>2</sub> - sigma<sup>2</sup>; (b) 0 les L<sub>1</sub>, L<sub>2 </sub> les 0.4401 if D<sub>0</sub> ges (1/D<sub>1</sub> + 1/D<sub>2 </sub> - 1/sigma<sup>2</sup>)<sup>-1</sup>; (c) 0 les L<sub>1</sub>, L<sub>2</sub> les 0.3802 and R(max{D<sub>1</sub>, D<sub>2</sub>}) - 1 les L<sub>0</sub> les R(max{D<sub>1</sub>, D<sub>2</sub>}) + 0.3802 otherwise. We also present a tighter bound on the distance between the El Gamal-Cover inner bound and the achievable region. In addition, these new bounds, which are easy to compute, inspire new designs of low-complexity near-optimal 2DSC. In essence, we demonstrate that any optimal 2DSC can be nearly separated into a multi-resolution source code and a traditional single-resolution code, and the resulting rate penalty for each description is less than 0.6901 bit/sample for general sources and less than 0.5 bit/sample for successively refinable sources\",\"PeriodicalId\":166130,\"journal\":{\"name\":\"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2005.1523655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2005.1523655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们首先提出了多描述源代码(MDSCs)的速率损失的上下界。对于双描述MDSC (2DSC),具有畸变Di的描述i的速率损失为Li = Ri $R(Di), i = in{1,2},其中Ri为第i个描述的速率;将两种描述一起解码以实现中心失真D0的联合速率损失为l0 = R1 + R2 - R(D0)。我们证明了给定任何方差为sigma2且均方误差失真测量的无记忆源,对于任何最优的2DSC, (a)如果D0小于D1 + D2 - sigma2,则L0小于0.8802;(b)当D0 ges (1/D1 + 1/D2 -1 /sigma2)-1时,0 les L1, L2 les 0.4401;(c) 0列L1, L2列0.3802,R(max{D1, D2}) - 1列L0列R(max{D1, D2}) + 0.3802,否则。我们还提出了El gamal -盖层内界与可达区域之间距离的更严格的界限。此外,这些易于计算的新边界激发了低复杂度近最优2DSC的新设计。从本质上讲,我们证明了任何最优的2DSC几乎可以分为多分辨率源代码和传统的单分辨率代码,并且对于一般源,每个描述的结果率惩罚小于0.6901比特/样本,对于连续可细化源,每个描述的结果率惩罚小于0.5比特/样本
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near separability of optimal multiple description source codes
In this paper, we first present new upper and lower bounds for the rate loss of multiple description source codes (MDSCs). For a two-description MDSC (2DSC), the rate loss of description i with distortion Di is Li = Ri $R(Di ), i isin {1, 2}, where Ri is the rate of the ith description; the joint rate loss associated with decoding the two descriptions together to achieve central distortion D0 is L 0 = R1 + R2 - R(D0). We show that given any memoryless source with variance sigma2 and mean squared error distortion measure, for any optimal 2DSC, (a) 0 les L0 les 0.8802 if D0 les D1 + D2 - sigma2; (b) 0 les L1, L2 les 0.4401 if D0 ges (1/D1 + 1/D2 - 1/sigma2)-1; (c) 0 les L1, L2 les 0.3802 and R(max{D1, D2}) - 1 les L0 les R(max{D1, D2}) + 0.3802 otherwise. We also present a tighter bound on the distance between the El Gamal-Cover inner bound and the achievable region. In addition, these new bounds, which are easy to compute, inspire new designs of low-complexity near-optimal 2DSC. In essence, we demonstrate that any optimal 2DSC can be nearly separated into a multi-resolution source code and a traditional single-resolution code, and the resulting rate penalty for each description is less than 0.6901 bit/sample for general sources and less than 0.5 bit/sample for successively refinable sources
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信