噪声图像中边缘检测技术的评价准则

F. L. Valverde, Nicolás Guil Mata, J. Muñoz, R. Nishikawa, K. Doi
{"title":"噪声图像中边缘检测技术的评价准则","authors":"F. L. Valverde, Nicolás Guil Mata, J. Muñoz, R. Nishikawa, K. Doi","doi":"10.1109/ICIP.2001.959158","DOIUrl":null,"url":null,"abstract":"Segmentation in noisy images is an important and difficult problem in pattern recognition. Edge detection is a crucial step in this process. Current subjective and objective methods for evaluation and comparison of segmentation techniques are inadequate or not applicable to edge detection techniques. A general framework for segmentation evaluation in noisy images is introduced after a brief review of previous work. Several measures based on similarity between true and result segmented images are defined. These measures are, then, combined in a unique criterion as a proposed global measure of performance. The results indicate that this global measure can be helpful in the evaluation and comparison of segmentation techniques applied to noisy images.","PeriodicalId":291827,"journal":{"name":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"An evaluation criterion for edge detection techniques in noisy images\",\"authors\":\"F. L. Valverde, Nicolás Guil Mata, J. Muñoz, R. Nishikawa, K. Doi\",\"doi\":\"10.1109/ICIP.2001.959158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segmentation in noisy images is an important and difficult problem in pattern recognition. Edge detection is a crucial step in this process. Current subjective and objective methods for evaluation and comparison of segmentation techniques are inadequate or not applicable to edge detection techniques. A general framework for segmentation evaluation in noisy images is introduced after a brief review of previous work. Several measures based on similarity between true and result segmented images are defined. These measures are, then, combined in a unique criterion as a proposed global measure of performance. The results indicate that this global measure can be helpful in the evaluation and comparison of segmentation techniques applied to noisy images.\",\"PeriodicalId\":291827,\"journal\":{\"name\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2001.959158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2001.959158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

噪声图像的分割是模式识别中的一个重要而又困难的问题。边缘检测是这一过程中的关键步骤。目前对分割技术进行评价和比较的主观和客观方法都不充分或不适用于边缘检测技术。在简要回顾前人工作的基础上,提出了噪声图像分割评价的一般框架。定义了基于真实图像和结果图像之间相似度的几种度量。然后,将这些措施结合在一个独特的标准中,作为拟议的全球绩效衡量标准。结果表明,这一全局度量有助于评价和比较应用于噪声图像的分割技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An evaluation criterion for edge detection techniques in noisy images
Segmentation in noisy images is an important and difficult problem in pattern recognition. Edge detection is a crucial step in this process. Current subjective and objective methods for evaluation and comparison of segmentation techniques are inadequate or not applicable to edge detection techniques. A general framework for segmentation evaluation in noisy images is introduced after a brief review of previous work. Several measures based on similarity between true and result segmented images are defined. These measures are, then, combined in a unique criterion as a proposed global measure of performance. The results indicate that this global measure can be helpful in the evaluation and comparison of segmentation techniques applied to noisy images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信