Vobulapuram Ramesh Kumar, S. J. Basha, Badugu Divya Madhuri, S. Sunithamani
{"title":"设计硅通孔,提高3D集成电路应用的性能","authors":"Vobulapuram Ramesh Kumar, S. J. Basha, Badugu Divya Madhuri, S. Sunithamani","doi":"10.1049/pbcs073g_ch10","DOIUrl":null,"url":null,"abstract":"This chapter discusses the design aspects of TSVs for 3D -IC applications. To improve the performance of TSVs, different insulating liners with low dielectric constants are used in place of the conventional insulating liner. Moreover, it has been noticed that the TSVs with copper filler material faces many problems such as skin effect, high resistance and electromigration effects. In order to overcome these problems and to improve the signal integrity, multiwalled carbon nanotubes (MWCNTs) are used that further improves the performance of TSVs. All the proposed structures are designed using the industry standard HSPICE simulator. The performance improvements in the proposed structures are verified by comparing the results with the conventional TSVs.","PeriodicalId":417544,"journal":{"name":"VLSI and Post-CMOS Electronics. Volume 2: Devices, circuits and interconnects","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of through silicon vias for improved performance in 3D IC applications\",\"authors\":\"Vobulapuram Ramesh Kumar, S. J. Basha, Badugu Divya Madhuri, S. Sunithamani\",\"doi\":\"10.1049/pbcs073g_ch10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter discusses the design aspects of TSVs for 3D -IC applications. To improve the performance of TSVs, different insulating liners with low dielectric constants are used in place of the conventional insulating liner. Moreover, it has been noticed that the TSVs with copper filler material faces many problems such as skin effect, high resistance and electromigration effects. In order to overcome these problems and to improve the signal integrity, multiwalled carbon nanotubes (MWCNTs) are used that further improves the performance of TSVs. All the proposed structures are designed using the industry standard HSPICE simulator. The performance improvements in the proposed structures are verified by comparing the results with the conventional TSVs.\",\"PeriodicalId\":417544,\"journal\":{\"name\":\"VLSI and Post-CMOS Electronics. Volume 2: Devices, circuits and interconnects\",\"volume\":\"151 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VLSI and Post-CMOS Electronics. Volume 2: Devices, circuits and interconnects\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/pbcs073g_ch10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VLSI and Post-CMOS Electronics. Volume 2: Devices, circuits and interconnects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/pbcs073g_ch10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of through silicon vias for improved performance in 3D IC applications
This chapter discusses the design aspects of TSVs for 3D -IC applications. To improve the performance of TSVs, different insulating liners with low dielectric constants are used in place of the conventional insulating liner. Moreover, it has been noticed that the TSVs with copper filler material faces many problems such as skin effect, high resistance and electromigration effects. In order to overcome these problems and to improve the signal integrity, multiwalled carbon nanotubes (MWCNTs) are used that further improves the performance of TSVs. All the proposed structures are designed using the industry standard HSPICE simulator. The performance improvements in the proposed structures are verified by comparing the results with the conventional TSVs.