采用神经网络工具对DMS/SCADA数据进行滤波,实现中期负荷预测

R. Sifontes, M. Marcano, A. Rojas, J. Rengifo, F. Ochoa, P. De Oliveira
{"title":"采用神经网络工具对DMS/SCADA数据进行滤波,实现中期负荷预测","authors":"R. Sifontes, M. Marcano, A. Rojas, J. Rengifo, F. Ochoa, P. De Oliveira","doi":"10.1109/ANDESCON.2014.7098547","DOIUrl":null,"url":null,"abstract":"This paper presents a methodology for mid-term load forecasting using Artificial Neural Networks (ANN). The inputs to ANN are real time data available from Supervisory Control and Data Acquisition and Distribution Management Systems (SCADA/DMS) databases. Due to a number of reasons, historical data stored in SCADA/DMS databases is affected by distorted measurements that can jeopardize the load forecasting results. This paper explores mid-term load demand forecasting using ANN considering distorted measurements in SCADA/DMS database. Proposed technique was applied to real-world measurements acquired from a 8.3 kV substation in Venezuela. ANN's forecasted results are compared with an exponential smoothing load forecasting procedure.","PeriodicalId":123628,"journal":{"name":"2014 IEEE ANDESCON","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DMS/SCADA data filtering using neural network tool to mid-term load forecasting\",\"authors\":\"R. Sifontes, M. Marcano, A. Rojas, J. Rengifo, F. Ochoa, P. De Oliveira\",\"doi\":\"10.1109/ANDESCON.2014.7098547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a methodology for mid-term load forecasting using Artificial Neural Networks (ANN). The inputs to ANN are real time data available from Supervisory Control and Data Acquisition and Distribution Management Systems (SCADA/DMS) databases. Due to a number of reasons, historical data stored in SCADA/DMS databases is affected by distorted measurements that can jeopardize the load forecasting results. This paper explores mid-term load demand forecasting using ANN considering distorted measurements in SCADA/DMS database. Proposed technique was applied to real-world measurements acquired from a 8.3 kV substation in Venezuela. ANN's forecasted results are compared with an exponential smoothing load forecasting procedure.\",\"PeriodicalId\":123628,\"journal\":{\"name\":\"2014 IEEE ANDESCON\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE ANDESCON\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANDESCON.2014.7098547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE ANDESCON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANDESCON.2014.7098547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用人工神经网络(ANN)进行中期负荷预测的方法。人工神经网络的输入是来自监控和数据采集和分配管理系统(SCADA/DMS)数据库的实时数据。由于多种原因,存储在SCADA/DMS数据库中的历史数据会受到失真测量的影响,从而危及负荷预测结果。本文探讨了考虑SCADA/DMS数据库中测量数据失真的人工神经网络中期负荷需求预测方法。所提出的技术已应用于委内瑞拉8.3千伏变电站的实际测量。将人工神经网络的预测结果与指数平滑负荷预测方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DMS/SCADA data filtering using neural network tool to mid-term load forecasting
This paper presents a methodology for mid-term load forecasting using Artificial Neural Networks (ANN). The inputs to ANN are real time data available from Supervisory Control and Data Acquisition and Distribution Management Systems (SCADA/DMS) databases. Due to a number of reasons, historical data stored in SCADA/DMS databases is affected by distorted measurements that can jeopardize the load forecasting results. This paper explores mid-term load demand forecasting using ANN considering distorted measurements in SCADA/DMS database. Proposed technique was applied to real-world measurements acquired from a 8.3 kV substation in Venezuela. ANN's forecasted results are compared with an exponential smoothing load forecasting procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信