使用局部二值模式算子对静态图像进行图像分类

Oana Astrid Vatamanu, Mircea Jivulescu
{"title":"使用局部二值模式算子对静态图像进行图像分类","authors":"Oana Astrid Vatamanu, Mircea Jivulescu","doi":"10.1109/SACI.2013.6608962","DOIUrl":null,"url":null,"abstract":"This paper aims to present an image classification method using Local Binary Pattern techniques. Local Binary Pattern operator transforms an static image, at pixel level, into a matrix of labels. These labels - integer numbers - describe and characterise the original image at a much lower scale. The authors propose the use of labels as a global characteristic of an static image. These techniques can be applied to an image or to a group of images and the characterization is done through an array of values extracted by the algorithm. The application developed allows the characterization of an image or a set of images, determining the similarity between different images and the degree of belonging to a particular group. Vectors of values are required for more images and image groups and each vector is representing different textures and their classification. As a result it becomes possible that indexing images, take into account the content of the information present in the image.","PeriodicalId":304729,"journal":{"name":"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Image classification using local binary pattern operators for static images\",\"authors\":\"Oana Astrid Vatamanu, Mircea Jivulescu\",\"doi\":\"10.1109/SACI.2013.6608962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to present an image classification method using Local Binary Pattern techniques. Local Binary Pattern operator transforms an static image, at pixel level, into a matrix of labels. These labels - integer numbers - describe and characterise the original image at a much lower scale. The authors propose the use of labels as a global characteristic of an static image. These techniques can be applied to an image or to a group of images and the characterization is done through an array of values extracted by the algorithm. The application developed allows the characterization of an image or a set of images, determining the similarity between different images and the degree of belonging to a particular group. Vectors of values are required for more images and image groups and each vector is representing different textures and their classification. As a result it becomes possible that indexing images, take into account the content of the information present in the image.\",\"PeriodicalId\":304729,\"journal\":{\"name\":\"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI.2013.6608962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2013.6608962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提出了一种基于局部二值模式的图像分类方法。局部二值模式算子在像素级将静态图像转换为标签矩阵。这些标签——整数——在一个低得多的尺度上描述和表征原始图像。作者建议使用标签作为静态图像的全局特征。这些技术可以应用于一张图像或一组图像,通过算法提取的一组值来完成特征描述。所开发的应用程序允许对图像或一组图像进行表征,确定不同图像之间的相似性以及属于特定组的程度。更多的图像和图像组需要值向量,每个向量代表不同的纹理及其分类。因此,索引图像,考虑到图像中存在的信息的内容成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image classification using local binary pattern operators for static images
This paper aims to present an image classification method using Local Binary Pattern techniques. Local Binary Pattern operator transforms an static image, at pixel level, into a matrix of labels. These labels - integer numbers - describe and characterise the original image at a much lower scale. The authors propose the use of labels as a global characteristic of an static image. These techniques can be applied to an image or to a group of images and the characterization is done through an array of values extracted by the algorithm. The application developed allows the characterization of an image or a set of images, determining the similarity between different images and the degree of belonging to a particular group. Vectors of values are required for more images and image groups and each vector is representing different textures and their classification. As a result it becomes possible that indexing images, take into account the content of the information present in the image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信