用于心脏射血分数估计的分层视觉变压器

Lhuqita Fazry, Asep Haryono, Nuzulul Khairu Nissa, Sunarno, Naufal Muhammad Hirzi, M. F. Rachmadi, W. Jatmiko
{"title":"用于心脏射血分数估计的分层视觉变压器","authors":"Lhuqita Fazry, Asep Haryono, Nuzulul Khairu Nissa, Sunarno, Naufal Muhammad Hirzi, M. F. Rachmadi, W. Jatmiko","doi":"10.1109/IWBIS56557.2022.9924664","DOIUrl":null,"url":null,"abstract":"The left ventricular of ejection fraction is one of the most important metric of cardiac function. It is used by cardiologist to identify patients who are eligible for life-prolonging therapies. However, the assessment of ejection fraction suffers from inter-observer variability. To overcome this challenge, we propose a deep learning approach, based on hierarchical vision Transformers, to estimate the ejection fraction from echocardiogram videos. The proposed method can estimate ejection fraction without the need for left ventrice segmentation first, make it more efficient than other methods. We evaluated our method on EchoNet-Dynamic dataset resulting 5.59, 7.59 and 0.59 for MAE, RMSE and R2 respectivelly. This results are better compared to the state-of-the-art method, Ultrasound Video Transformer (UVT). The source code is available on https://github.com/lhfazry/UltraSwin.","PeriodicalId":348371,"journal":{"name":"2022 7th International Workshop on Big Data and Information Security (IWBIS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hierarchical Vision Transformers for Cardiac Ejection Fraction Estimation\",\"authors\":\"Lhuqita Fazry, Asep Haryono, Nuzulul Khairu Nissa, Sunarno, Naufal Muhammad Hirzi, M. F. Rachmadi, W. Jatmiko\",\"doi\":\"10.1109/IWBIS56557.2022.9924664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The left ventricular of ejection fraction is one of the most important metric of cardiac function. It is used by cardiologist to identify patients who are eligible for life-prolonging therapies. However, the assessment of ejection fraction suffers from inter-observer variability. To overcome this challenge, we propose a deep learning approach, based on hierarchical vision Transformers, to estimate the ejection fraction from echocardiogram videos. The proposed method can estimate ejection fraction without the need for left ventrice segmentation first, make it more efficient than other methods. We evaluated our method on EchoNet-Dynamic dataset resulting 5.59, 7.59 and 0.59 for MAE, RMSE and R2 respectivelly. This results are better compared to the state-of-the-art method, Ultrasound Video Transformer (UVT). The source code is available on https://github.com/lhfazry/UltraSwin.\",\"PeriodicalId\":348371,\"journal\":{\"name\":\"2022 7th International Workshop on Big Data and Information Security (IWBIS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Workshop on Big Data and Information Security (IWBIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWBIS56557.2022.9924664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Workshop on Big Data and Information Security (IWBIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWBIS56557.2022.9924664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

左室射血分数是衡量心功能最重要的指标之一。心脏病专家使用它来确定有资格接受延长生命治疗的患者。然而,对射血分数的评估存在观察者之间的可变性。为了克服这一挑战,我们提出了一种基于分层视觉变压器的深度学习方法,以估计超声心动图视频中的射血分数。该方法无需对左心室进行分割即可估计出射血分数,比其他方法效率更高。我们在EchoNet-Dynamic数据集上对我们的方法进行了评估,MAE、RMSE和R2分别为5.59、7.59和0.59。这个结果比最先进的方法,超声视频变压器(UVT)更好。源代码可在https://github.com/lhfazry/UltraSwin上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Vision Transformers for Cardiac Ejection Fraction Estimation
The left ventricular of ejection fraction is one of the most important metric of cardiac function. It is used by cardiologist to identify patients who are eligible for life-prolonging therapies. However, the assessment of ejection fraction suffers from inter-observer variability. To overcome this challenge, we propose a deep learning approach, based on hierarchical vision Transformers, to estimate the ejection fraction from echocardiogram videos. The proposed method can estimate ejection fraction without the need for left ventrice segmentation first, make it more efficient than other methods. We evaluated our method on EchoNet-Dynamic dataset resulting 5.59, 7.59 and 0.59 for MAE, RMSE and R2 respectivelly. This results are better compared to the state-of-the-art method, Ultrasound Video Transformer (UVT). The source code is available on https://github.com/lhfazry/UltraSwin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信