Taemin Lee, Dongki Kim, Hyunsun Park, S. Yoo, Sunggu Lee
{"title":"用于新兴存储技术的基于fpga的原型系统","authors":"Taemin Lee, Dongki Kim, Hyunsun Park, S. Yoo, Sunggu Lee","doi":"10.1109/RSP.2014.6966901","DOIUrl":null,"url":null,"abstract":"As DRAM faces scaling limit, several new memory technologies are considered as candidates for replacing or complementing DRAM main memory. Compared to DRAM, the new memories have two major differences, non-volatility and write overhead in terms of endurance, latency and power. We built two different FPGA-based evaluation boards to evaluate hardware and software designs for new-memory based main memory; one with a DRAM subsystem having parameterizable latency and non-volatility emulation, and the other with the real chips of new memory namely phase-change RAM (PRAM). We experimented primitive functions and SQLite-based benchmarks on Linux, verifying the workings of new functionalities, e.g., nonvolatility and evaluating the impacts of new memory on software performance. In our experiments, we also demonstrated the impact of new memory-aware software/hardware designs on program performance on a DRAM/PRAM hybrid memory.","PeriodicalId":394637,"journal":{"name":"2014 25nd IEEE International Symposium on Rapid System Prototyping","volume":"64 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"FPGA-based prototyping systems for emerging memory technologies\",\"authors\":\"Taemin Lee, Dongki Kim, Hyunsun Park, S. Yoo, Sunggu Lee\",\"doi\":\"10.1109/RSP.2014.6966901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As DRAM faces scaling limit, several new memory technologies are considered as candidates for replacing or complementing DRAM main memory. Compared to DRAM, the new memories have two major differences, non-volatility and write overhead in terms of endurance, latency and power. We built two different FPGA-based evaluation boards to evaluate hardware and software designs for new-memory based main memory; one with a DRAM subsystem having parameterizable latency and non-volatility emulation, and the other with the real chips of new memory namely phase-change RAM (PRAM). We experimented primitive functions and SQLite-based benchmarks on Linux, verifying the workings of new functionalities, e.g., nonvolatility and evaluating the impacts of new memory on software performance. In our experiments, we also demonstrated the impact of new memory-aware software/hardware designs on program performance on a DRAM/PRAM hybrid memory.\",\"PeriodicalId\":394637,\"journal\":{\"name\":\"2014 25nd IEEE International Symposium on Rapid System Prototyping\",\"volume\":\"64 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 25nd IEEE International Symposium on Rapid System Prototyping\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSP.2014.6966901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 25nd IEEE International Symposium on Rapid System Prototyping","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSP.2014.6966901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FPGA-based prototyping systems for emerging memory technologies
As DRAM faces scaling limit, several new memory technologies are considered as candidates for replacing or complementing DRAM main memory. Compared to DRAM, the new memories have two major differences, non-volatility and write overhead in terms of endurance, latency and power. We built two different FPGA-based evaluation boards to evaluate hardware and software designs for new-memory based main memory; one with a DRAM subsystem having parameterizable latency and non-volatility emulation, and the other with the real chips of new memory namely phase-change RAM (PRAM). We experimented primitive functions and SQLite-based benchmarks on Linux, verifying the workings of new functionalities, e.g., nonvolatility and evaluating the impacts of new memory on software performance. In our experiments, we also demonstrated the impact of new memory-aware software/hardware designs on program performance on a DRAM/PRAM hybrid memory.