Sagar Saxena, Deekshith Shenoy Manur, M. Ahmed, A. Ganguly
{"title":"使用基于石墨烯的太赫兹波段天线的芯片间和芯片内通信互连结构的能源效率","authors":"Sagar Saxena, Deekshith Shenoy Manur, M. Ahmed, A. Ganguly","doi":"10.1109/IGCC.2017.8323603","DOIUrl":null,"url":null,"abstract":"Most computing platforms such as embedded systems to server blades comprise of multiple Systems-on-Chips (SoCs). Traditionally, these multichip platforms are interconnected using metal traces over a substrate such as a Printed Circuit Board (PCB). Communications in multichip platforms involves data transfer between internal nets and the peripheral I/O ports of the chips as well as across the PCB traces. This multi-hop communication leads to higher energy consumption, decrease in data bandwidth and increase in message latency. Novel devices based on graphene structures capable of establishing wireless links are explored in recent literature to provide high performance on-chip interconnections. In this work, we propose to extend Graphene-based wireless links to enable energy-efficient, phase-based chip-to-chip communication to create a seamless, wireless interconnection fabric for multichip systems. With cycle-accurate simulations we show that such a design with torus like folding based on THz links instead of global wires can outperform state-of-the-art wireline multichip systems.","PeriodicalId":133239,"journal":{"name":"2017 Eighth International Green and Sustainable Computing Conference (IGSC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Energy-efficiency in interconnection fabrics for inter and intra-chip communication using Graphene-based THz-band antennas\",\"authors\":\"Sagar Saxena, Deekshith Shenoy Manur, M. Ahmed, A. Ganguly\",\"doi\":\"10.1109/IGCC.2017.8323603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most computing platforms such as embedded systems to server blades comprise of multiple Systems-on-Chips (SoCs). Traditionally, these multichip platforms are interconnected using metal traces over a substrate such as a Printed Circuit Board (PCB). Communications in multichip platforms involves data transfer between internal nets and the peripheral I/O ports of the chips as well as across the PCB traces. This multi-hop communication leads to higher energy consumption, decrease in data bandwidth and increase in message latency. Novel devices based on graphene structures capable of establishing wireless links are explored in recent literature to provide high performance on-chip interconnections. In this work, we propose to extend Graphene-based wireless links to enable energy-efficient, phase-based chip-to-chip communication to create a seamless, wireless interconnection fabric for multichip systems. With cycle-accurate simulations we show that such a design with torus like folding based on THz links instead of global wires can outperform state-of-the-art wireline multichip systems.\",\"PeriodicalId\":133239,\"journal\":{\"name\":\"2017 Eighth International Green and Sustainable Computing Conference (IGSC)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Eighth International Green and Sustainable Computing Conference (IGSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGCC.2017.8323603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Eighth International Green and Sustainable Computing Conference (IGSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGCC.2017.8323603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy-efficiency in interconnection fabrics for inter and intra-chip communication using Graphene-based THz-band antennas
Most computing platforms such as embedded systems to server blades comprise of multiple Systems-on-Chips (SoCs). Traditionally, these multichip platforms are interconnected using metal traces over a substrate such as a Printed Circuit Board (PCB). Communications in multichip platforms involves data transfer between internal nets and the peripheral I/O ports of the chips as well as across the PCB traces. This multi-hop communication leads to higher energy consumption, decrease in data bandwidth and increase in message latency. Novel devices based on graphene structures capable of establishing wireless links are explored in recent literature to provide high performance on-chip interconnections. In this work, we propose to extend Graphene-based wireless links to enable energy-efficient, phase-based chip-to-chip communication to create a seamless, wireless interconnection fabric for multichip systems. With cycle-accurate simulations we show that such a design with torus like folding based on THz links instead of global wires can outperform state-of-the-art wireline multichip systems.