服务器繁忙时间查找和合成用户日志生成器按需架构

Batiray Erbay, Tolga Büyüktanir, Mert Altun, Harun Uz
{"title":"服务器繁忙时间查找和合成用户日志生成器按需架构","authors":"Batiray Erbay, Tolga Büyüktanir, Mert Altun, Harun Uz","doi":"10.1109/UBMK55850.2022.9919538","DOIUrl":null,"url":null,"abstract":"As user data becomes more valuable, research in the field to simulate and generate the data using new ways is further advancing. Finding sufficiently many new and realistic user log data to load test the system with, is not always possible. In this research, a “system idle time finder” module which counts user logs to find the least busy times, and a “scenario generation module” which fits the probability density function to user logs and generates test scenarios have been prototyped. Prototypes have been integrated with the deep reinforcement learning-assisted crashless test module, and generated scenarios have been tested automatically at the least busy times.","PeriodicalId":417604,"journal":{"name":"2022 7th International Conference on Computer Science and Engineering (UBMK)","volume":"10 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Server Busy Times Finder and Synthetic User Log Generator On-Demand Architecture\",\"authors\":\"Batiray Erbay, Tolga Büyüktanir, Mert Altun, Harun Uz\",\"doi\":\"10.1109/UBMK55850.2022.9919538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As user data becomes more valuable, research in the field to simulate and generate the data using new ways is further advancing. Finding sufficiently many new and realistic user log data to load test the system with, is not always possible. In this research, a “system idle time finder” module which counts user logs to find the least busy times, and a “scenario generation module” which fits the probability density function to user logs and generates test scenarios have been prototyped. Prototypes have been integrated with the deep reinforcement learning-assisted crashless test module, and generated scenarios have been tested automatically at the least busy times.\",\"PeriodicalId\":417604,\"journal\":{\"name\":\"2022 7th International Conference on Computer Science and Engineering (UBMK)\",\"volume\":\"10 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Conference on Computer Science and Engineering (UBMK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UBMK55850.2022.9919538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK55850.2022.9919538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着用户数据变得越来越有价值,使用新方法模拟和生成数据的研究正在进一步推进。找到足够多的新的、真实的用户日志数据来对系统进行负载测试并不总是可能的。本研究构建了“系统空闲时间查找器”模块和“场景生成模块”,分别对用户日志进行统计,找出最不繁忙的时间,并对用户日志进行概率密度拟合,生成测试场景。原型机已与深度强化学习辅助的无碰撞测试模块集成,并在最不繁忙的时间自动测试生成的场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Server Busy Times Finder and Synthetic User Log Generator On-Demand Architecture
As user data becomes more valuable, research in the field to simulate and generate the data using new ways is further advancing. Finding sufficiently many new and realistic user log data to load test the system with, is not always possible. In this research, a “system idle time finder” module which counts user logs to find the least busy times, and a “scenario generation module” which fits the probability density function to user logs and generates test scenarios have been prototyped. Prototypes have been integrated with the deep reinforcement learning-assisted crashless test module, and generated scenarios have been tested automatically at the least busy times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信