机器预测和人类决策与变化的回报和技能

M. A. Ribers, H. Ullrich
{"title":"机器预测和人类决策与变化的回报和技能","authors":"M. A. Ribers, H. Ullrich","doi":"10.2139/ssrn.3726018","DOIUrl":null,"url":null,"abstract":"Human decision-making differs due to variation in both incentives and available information. This generates substantial challenges for the evaluation of whether and how machine learning predictions can improve decision outcomes. We propose a framework that incorporates machine learning on large-scale administrative data into a choice model featuring heterogeneity in decision maker payoff functions and predictive skill. We apply our framework to the major health policy problem of improving the efficiency in antibiotic prescribing in primary care, one of the leading causes of antibiotic resistance. Our analysis reveals large variation in physicians’ skill to diagnose bacterial infections and in how physicians trade off the externality inherent in antibiotic use against its curative benefit. Counterfactual policy simulations show the combination of machine learning predictions with physician diagnostic skill achieves a 25.4 percent reduction in prescribing and the largest welfare gains compared to alternative policies for estimated as well as plausible hypothetical weights on the antibiotic resistance externality.","PeriodicalId":143058,"journal":{"name":"Econometric Modeling: Microeconometric Studies of Health","volume":"62 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Machine Predictions and Human Decisions with Variation in Payoffs and Skills\",\"authors\":\"M. A. Ribers, H. Ullrich\",\"doi\":\"10.2139/ssrn.3726018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human decision-making differs due to variation in both incentives and available information. This generates substantial challenges for the evaluation of whether and how machine learning predictions can improve decision outcomes. We propose a framework that incorporates machine learning on large-scale administrative data into a choice model featuring heterogeneity in decision maker payoff functions and predictive skill. We apply our framework to the major health policy problem of improving the efficiency in antibiotic prescribing in primary care, one of the leading causes of antibiotic resistance. Our analysis reveals large variation in physicians’ skill to diagnose bacterial infections and in how physicians trade off the externality inherent in antibiotic use against its curative benefit. Counterfactual policy simulations show the combination of machine learning predictions with physician diagnostic skill achieves a 25.4 percent reduction in prescribing and the largest welfare gains compared to alternative policies for estimated as well as plausible hypothetical weights on the antibiotic resistance externality.\",\"PeriodicalId\":143058,\"journal\":{\"name\":\"Econometric Modeling: Microeconometric Studies of Health\",\"volume\":\"62 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Microeconometric Studies of Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3726018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Microeconometric Studies of Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3726018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

人类的决策因激励和可用信息的不同而不同。这对评估机器学习预测是否以及如何改善决策结果产生了重大挑战。我们提出了一个框架,将大规模行政数据上的机器学习整合到一个具有决策者支付函数和预测技能异质性的选择模型中。我们将我们的框架应用于提高初级保健中抗生素处方效率的主要卫生政策问题,这是抗生素耐药性的主要原因之一。我们的分析揭示了医生诊断细菌感染的技能以及医生如何权衡抗生素使用的内在外部性与治疗效果之间的巨大差异。反事实政策模拟显示,机器学习预测与医生诊断技能相结合,在抗生素耐药性外部性的估计权重和合理假设权重方面,与替代政策相比,处方减少了25.4%,福利收益最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Predictions and Human Decisions with Variation in Payoffs and Skills
Human decision-making differs due to variation in both incentives and available information. This generates substantial challenges for the evaluation of whether and how machine learning predictions can improve decision outcomes. We propose a framework that incorporates machine learning on large-scale administrative data into a choice model featuring heterogeneity in decision maker payoff functions and predictive skill. We apply our framework to the major health policy problem of improving the efficiency in antibiotic prescribing in primary care, one of the leading causes of antibiotic resistance. Our analysis reveals large variation in physicians’ skill to diagnose bacterial infections and in how physicians trade off the externality inherent in antibiotic use against its curative benefit. Counterfactual policy simulations show the combination of machine learning predictions with physician diagnostic skill achieves a 25.4 percent reduction in prescribing and the largest welfare gains compared to alternative policies for estimated as well as plausible hypothetical weights on the antibiotic resistance externality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信