一类半线性抛物型方程组的同时零可控性

Carole Louis-Rose
{"title":"一类半线性抛物型方程组的同时零可控性","authors":"Carole Louis-Rose","doi":"10.1137/1.9781611974072.37","DOIUrl":null,"url":null,"abstract":" ∂y1 ∂t − ∆y1 + f1(y1, y2) = kχω in Q, ∂y2 ∂t − ∆y2 + f2(y1, y2) = kχω in Q, y1 = y2 = 0 on Σ, y1(0) = y 0 1 , y2(0) = y 0 2 in Ω, where fi i = 1, 2, are functions of class C 1 on R, y i ∈ L (Ω) i = 1, 2, k ∈ L(G) represents the control function and χω is the characteristic function of ω, the set where the control is supported. The functions fi i = 1, 2 are assumed to be globally Lipschitz all along the paper, i.e. there exist Ji > 0, i = 1, 2 such that (1.2) |fi(x, y) − fi(z, u)| 6 Ji(‖x− z‖L2(Ω) + ‖y − u‖L2(Ω)), ∀x, y, z, u ∈ L(Ω). Such a system can be met in the field of mathematical biology; we refer to [1]. In this paper, we focus on a simultaneous null controllability problem with constrained state. Let (ej)j=1,...,m be a family of vectors of L(Q). Suppose that: (1.3) the vectors (ejχω)j=1,...,m are linearly independent.","PeriodicalId":193106,"journal":{"name":"SIAM Conf. on Control and its Applications","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Simultaneous null controllability of a semilinear system of parabolic equations\",\"authors\":\"Carole Louis-Rose\",\"doi\":\"10.1137/1.9781611974072.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" ∂y1 ∂t − ∆y1 + f1(y1, y2) = kχω in Q, ∂y2 ∂t − ∆y2 + f2(y1, y2) = kχω in Q, y1 = y2 = 0 on Σ, y1(0) = y 0 1 , y2(0) = y 0 2 in Ω, where fi i = 1, 2, are functions of class C 1 on R, y i ∈ L (Ω) i = 1, 2, k ∈ L(G) represents the control function and χω is the characteristic function of ω, the set where the control is supported. The functions fi i = 1, 2 are assumed to be globally Lipschitz all along the paper, i.e. there exist Ji > 0, i = 1, 2 such that (1.2) |fi(x, y) − fi(z, u)| 6 Ji(‖x− z‖L2(Ω) + ‖y − u‖L2(Ω)), ∀x, y, z, u ∈ L(Ω). Such a system can be met in the field of mathematical biology; we refer to [1]. In this paper, we focus on a simultaneous null controllability problem with constrained state. Let (ej)j=1,...,m be a family of vectors of L(Q). Suppose that: (1.3) the vectors (ejχω)j=1,...,m are linearly independent.\",\"PeriodicalId\":193106,\"journal\":{\"name\":\"SIAM Conf. on Control and its Applications\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Conf. on Control and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611974072.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Conf. on Control and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611974072.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

∂y1∂t−∆y1 + f1 (y1, y2) = kχω在问,∂y2∂t−∆y2 k + f2 (y1, y2) =χω在问,y1Σ= y2 = 0, y1 (0) = y 0 1, y2 (0) = y为0 2Ω,fi i = 1, 2,在R C类的函数1,y我∈L(Ω)= 1,2 k∈L (G)代表了控制功能和χω是ω的特征函数,设置控制的支持。假设函数fi = 1,2在整篇论文中都是全局Lipschitz,即存在Ji > 0, i = 1,2,使得(1.2)|fi(x, y)−fi(z, u)| 6 Ji(‖x−z‖L2(Ω) +‖y−u‖L2(Ω)),∀x, y, z, u∈L(Ω)。这样的系统可以在数学生物学领域得到满足;我们参考[1]。本文主要研究一类具有约束状态的同时零可控性问题。让(ej) j = 1,…,m是L(Q)的向量族。设(1.3)向量(ejχω)j=1,…,m是线性无关的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simultaneous null controllability of a semilinear system of parabolic equations
 ∂y1 ∂t − ∆y1 + f1(y1, y2) = kχω in Q, ∂y2 ∂t − ∆y2 + f2(y1, y2) = kχω in Q, y1 = y2 = 0 on Σ, y1(0) = y 0 1 , y2(0) = y 0 2 in Ω, where fi i = 1, 2, are functions of class C 1 on R, y i ∈ L (Ω) i = 1, 2, k ∈ L(G) represents the control function and χω is the characteristic function of ω, the set where the control is supported. The functions fi i = 1, 2 are assumed to be globally Lipschitz all along the paper, i.e. there exist Ji > 0, i = 1, 2 such that (1.2) |fi(x, y) − fi(z, u)| 6 Ji(‖x− z‖L2(Ω) + ‖y − u‖L2(Ω)), ∀x, y, z, u ∈ L(Ω). Such a system can be met in the field of mathematical biology; we refer to [1]. In this paper, we focus on a simultaneous null controllability problem with constrained state. Let (ej)j=1,...,m be a family of vectors of L(Q). Suppose that: (1.3) the vectors (ejχω)j=1,...,m are linearly independent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信