用光结构粘合材料粘合硅模

K. Hollstein, K. Weide-Zaage
{"title":"用光结构粘合材料粘合硅模","authors":"K. Hollstein, K. Weide-Zaage","doi":"10.23919/IWLPC52010.2020.9375868","DOIUrl":null,"url":null,"abstract":"For a novel packaging application, a method is needed to bond silicon chips on a wafer surface. One of the main requirements is a comparably thin and structurable adhesive layer. The adhesive layer has to have a thickness of approximately 10 to 20 μm and is required to cover the edges of the silicon die. As this application is quite unique, thorough research has been done to identify applicable materials and processes. Common technologies like die bonding, pin transfer, jetting etc. cannot be used as the adhesive volume has to be controlled very precise and the dimensions of the adhesive bond are too coarse for the application. The desired thickness of the adhesion layer can only be achieved using photostructurable materials. A parameter analysis has been done in order to determine applicability of the photostructurable material as an adhesive layer. Therefore, die bonding temperature and bonding pressure have been varied. The influence of the parameter variation has been demonstrated using die shear testing and cross sectional imaging. Two geometrical variations of the adhesive layer are compared. A sufficient parameter set could be identified using this approach.","PeriodicalId":192698,"journal":{"name":"2020 International Wafer Level Packaging Conference (IWLPC)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silicon Die Bonding using a Photostructurable Adhesive Material\",\"authors\":\"K. Hollstein, K. Weide-Zaage\",\"doi\":\"10.23919/IWLPC52010.2020.9375868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a novel packaging application, a method is needed to bond silicon chips on a wafer surface. One of the main requirements is a comparably thin and structurable adhesive layer. The adhesive layer has to have a thickness of approximately 10 to 20 μm and is required to cover the edges of the silicon die. As this application is quite unique, thorough research has been done to identify applicable materials and processes. Common technologies like die bonding, pin transfer, jetting etc. cannot be used as the adhesive volume has to be controlled very precise and the dimensions of the adhesive bond are too coarse for the application. The desired thickness of the adhesion layer can only be achieved using photostructurable materials. A parameter analysis has been done in order to determine applicability of the photostructurable material as an adhesive layer. Therefore, die bonding temperature and bonding pressure have been varied. The influence of the parameter variation has been demonstrated using die shear testing and cross sectional imaging. Two geometrical variations of the adhesive layer are compared. A sufficient parameter set could be identified using this approach.\",\"PeriodicalId\":192698,\"journal\":{\"name\":\"2020 International Wafer Level Packaging Conference (IWLPC)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Wafer Level Packaging Conference (IWLPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/IWLPC52010.2020.9375868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Wafer Level Packaging Conference (IWLPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IWLPC52010.2020.9375868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于一种新颖的封装应用,需要一种将硅片粘接在晶圆表面的方法。其中一个主要的要求是相对较薄的和可构造的粘接层。粘接层的厚度必须约为10至20 μm,并要求覆盖硅模具的边缘。由于这种应用是非常独特的,已经做了深入的研究,以确定适用的材料和工艺。一般的技术如模具粘合、销转移、喷射等都不能使用,因为粘合剂的体积必须控制得非常精确,而粘合剂的尺寸对于应用来说太粗糙了。所需的粘附层厚度只能使用光结构材料来实现。为了确定光结构材料作为粘接层的适用性,进行了参数分析。因此,模具的键合温度和键合压力都有变化。参数变化的影响已通过模具剪切试验和横断面成像证明。比较了粘接层的两种几何变化。使用这种方法可以确定足够的参数集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Silicon Die Bonding using a Photostructurable Adhesive Material
For a novel packaging application, a method is needed to bond silicon chips on a wafer surface. One of the main requirements is a comparably thin and structurable adhesive layer. The adhesive layer has to have a thickness of approximately 10 to 20 μm and is required to cover the edges of the silicon die. As this application is quite unique, thorough research has been done to identify applicable materials and processes. Common technologies like die bonding, pin transfer, jetting etc. cannot be used as the adhesive volume has to be controlled very precise and the dimensions of the adhesive bond are too coarse for the application. The desired thickness of the adhesion layer can only be achieved using photostructurable materials. A parameter analysis has been done in order to determine applicability of the photostructurable material as an adhesive layer. Therefore, die bonding temperature and bonding pressure have been varied. The influence of the parameter variation has been demonstrated using die shear testing and cross sectional imaging. Two geometrical variations of the adhesive layer are compared. A sufficient parameter set could be identified using this approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信