S. Keawsawasvong, J. Kumar, Rungkhun Banyong, Kongtawan Sangjinda
{"title":"深层连续桩壁黏结-摩擦充填体极限水平法向压力稳定性图","authors":"S. Keawsawasvong, J. Kumar, Rungkhun Banyong, Kongtawan Sangjinda","doi":"10.2174/18741495-v16-e2209080","DOIUrl":null,"url":null,"abstract":"\n \n This study presents a numerical solution for determining the limiting uniform normal pressure acting horizontally behind cohesive-frictional backfill material in a deep contiguous piled wall. At this limiting pressure, the soil tends to flow out in gaps between a series of vertical piles placed at a certain uniform horizontal spacing.\n \n \n \n The lower and upper bound plane strain finite element limit analysis (FELA) has been carried out for this purpose. The Mohr-Coulomb failure criterion, using an associated flow rule, was employed to impose the yield condition in the soil mass.\n \n \n \n A parametric study was carried out to obtain the magnitude of the non-dimensional limiting lateral resistance (F/cD) as a function of normalized pile spacing (S/D), the friction angle of soils (ϕ), and the adhesion factor (δ) at the soil-pile interface; here, F refers to the lateral normal resistance (force) per unit length offered by the pile, S forms the clear spacing between piles, D is the diameter of the pile and c is soil cohesion. The impact of the different parameters on the failure mechanisms has been examined comprehensively.\n \n \n \n The lateral resistance (F/cD) offered by the piles increases generally with a decrease in the spacing between the piles. The magnitude of F/cD increases further with an increase in the values of ϕ and δ.\n","PeriodicalId":350575,"journal":{"name":"The Open Civil Engineering Journal","volume":"129 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stability Charts for Limiting Horizontal Normal Pressure on Cohesive-frictional Backfill for Deep Contiguous Piled Walls\",\"authors\":\"S. Keawsawasvong, J. Kumar, Rungkhun Banyong, Kongtawan Sangjinda\",\"doi\":\"10.2174/18741495-v16-e2209080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n This study presents a numerical solution for determining the limiting uniform normal pressure acting horizontally behind cohesive-frictional backfill material in a deep contiguous piled wall. At this limiting pressure, the soil tends to flow out in gaps between a series of vertical piles placed at a certain uniform horizontal spacing.\\n \\n \\n \\n The lower and upper bound plane strain finite element limit analysis (FELA) has been carried out for this purpose. The Mohr-Coulomb failure criterion, using an associated flow rule, was employed to impose the yield condition in the soil mass.\\n \\n \\n \\n A parametric study was carried out to obtain the magnitude of the non-dimensional limiting lateral resistance (F/cD) as a function of normalized pile spacing (S/D), the friction angle of soils (ϕ), and the adhesion factor (δ) at the soil-pile interface; here, F refers to the lateral normal resistance (force) per unit length offered by the pile, S forms the clear spacing between piles, D is the diameter of the pile and c is soil cohesion. The impact of the different parameters on the failure mechanisms has been examined comprehensively.\\n \\n \\n \\n The lateral resistance (F/cD) offered by the piles increases generally with a decrease in the spacing between the piles. The magnitude of F/cD increases further with an increase in the values of ϕ and δ.\\n\",\"PeriodicalId\":350575,\"journal\":{\"name\":\"The Open Civil Engineering Journal\",\"volume\":\"129 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Open Civil Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/18741495-v16-e2209080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Civil Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/18741495-v16-e2209080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stability Charts for Limiting Horizontal Normal Pressure on Cohesive-frictional Backfill for Deep Contiguous Piled Walls
This study presents a numerical solution for determining the limiting uniform normal pressure acting horizontally behind cohesive-frictional backfill material in a deep contiguous piled wall. At this limiting pressure, the soil tends to flow out in gaps between a series of vertical piles placed at a certain uniform horizontal spacing.
The lower and upper bound plane strain finite element limit analysis (FELA) has been carried out for this purpose. The Mohr-Coulomb failure criterion, using an associated flow rule, was employed to impose the yield condition in the soil mass.
A parametric study was carried out to obtain the magnitude of the non-dimensional limiting lateral resistance (F/cD) as a function of normalized pile spacing (S/D), the friction angle of soils (ϕ), and the adhesion factor (δ) at the soil-pile interface; here, F refers to the lateral normal resistance (force) per unit length offered by the pile, S forms the clear spacing between piles, D is the diameter of the pile and c is soil cohesion. The impact of the different parameters on the failure mechanisms has been examined comprehensively.
The lateral resistance (F/cD) offered by the piles increases generally with a decrease in the spacing between the piles. The magnitude of F/cD increases further with an increase in the values of ϕ and δ.