曲线分割与超椭圆表示

Paul L. Rosin, G. West
{"title":"曲线分割与超椭圆表示","authors":"Paul L. Rosin, G. West","doi":"10.1049/IP-VIS:19952140","DOIUrl":null,"url":null,"abstract":"A method of segmenting curves into series of superelliptical arcs is presented. A superellipse is the 2-dimensional form of the superquadratic and can describe circles, ellipses, crosses, parallelograms and rounded rectangles with the same number of parameters. The superellipses are fitted using Powell's technique to minimise an appropriate error metric. A tree is used to represent a number of interpretations and the concept of significance used to choose the most perceptually correct description. Results show that perceptually good features are chosen to represent the various shapes that occur in images.","PeriodicalId":421313,"journal":{"name":"IEE Proceedings - Vision, Image, and Signal Processing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Curve segmentation and representation by superellipses\",\"authors\":\"Paul L. Rosin, G. West\",\"doi\":\"10.1049/IP-VIS:19952140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method of segmenting curves into series of superelliptical arcs is presented. A superellipse is the 2-dimensional form of the superquadratic and can describe circles, ellipses, crosses, parallelograms and rounded rectangles with the same number of parameters. The superellipses are fitted using Powell's technique to minimise an appropriate error metric. A tree is used to represent a number of interpretations and the concept of significance used to choose the most perceptually correct description. Results show that perceptually good features are chosen to represent the various shapes that occur in images.\",\"PeriodicalId\":421313,\"journal\":{\"name\":\"IEE Proceedings - Vision, Image, and Signal Processing\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEE Proceedings - Vision, Image, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/IP-VIS:19952140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEE Proceedings - Vision, Image, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/IP-VIS:19952140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

提出了一种将曲线分割成一系列超椭圆弧的方法。超椭圆是超二次元的二维形式,可以用相同数量的参数描述圆、椭圆、十字、平行四边形和圆角矩形。超椭圆的拟合使用鲍威尔的技术,以尽量减少适当的误差度量。树被用来表示一些解释,重要性的概念被用来选择感知上最正确的描述。结果表明,感知上好的特征被选择来表示图像中出现的各种形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Curve segmentation and representation by superellipses
A method of segmenting curves into series of superelliptical arcs is presented. A superellipse is the 2-dimensional form of the superquadratic and can describe circles, ellipses, crosses, parallelograms and rounded rectangles with the same number of parameters. The superellipses are fitted using Powell's technique to minimise an appropriate error metric. A tree is used to represent a number of interpretations and the concept of significance used to choose the most perceptually correct description. Results show that perceptually good features are chosen to represent the various shapes that occur in images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信