基于BI-GRU +注意力+胶囊融合的影评情感分析

Zhifei Hu, P. sup
{"title":"基于BI-GRU +注意力+胶囊融合的影评情感分析","authors":"Zhifei Hu, P. sup","doi":"10.36227/techrxiv.14863401.v1","DOIUrl":null,"url":null,"abstract":"In this paper, a sentiment analysis model based on the bi-directional GRU, Attention and Capusle fusion of BI-GRU+Attention+Capsule was designed and implemented based on the sentiment analysis task of the open film review data set IMDB, and combined with the bi-directional GRU, Attention and Capsule. It is compared with six deep learning models, such as LSTM, CNN, GRU, BI-GRU, CNN+GRU and GRU+CNN. The experimental results show that the accuracy of the BI-GRU model combined with Attention and Capusule is higher than the other six models, and the accuracy of the GRU+CNN model is higher than that of the CNN+GRU model, and the accuracy of the CNN+GRU model is higher than that of the CNN model. The accuracy of CNN model was successively higher than that of LSTM, BI-GRU and GRU model. The fusion model of BI-GRU +Attention+Capsule adopted in this paper has the highest accuracy among all the models. In conclusion, the fusion model of BI-GRU+Attention+Capsule effectively improves the accuracy of text sentiment classification.","PeriodicalId":387664,"journal":{"name":"Academic Journal of Computing & Information Science","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sentiment Analysis of Film Reviews Based on BI-GRU +Attention+Capsule Fusion\",\"authors\":\"Zhifei Hu, P. sup\",\"doi\":\"10.36227/techrxiv.14863401.v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a sentiment analysis model based on the bi-directional GRU, Attention and Capusle fusion of BI-GRU+Attention+Capsule was designed and implemented based on the sentiment analysis task of the open film review data set IMDB, and combined with the bi-directional GRU, Attention and Capsule. It is compared with six deep learning models, such as LSTM, CNN, GRU, BI-GRU, CNN+GRU and GRU+CNN. The experimental results show that the accuracy of the BI-GRU model combined with Attention and Capusule is higher than the other six models, and the accuracy of the GRU+CNN model is higher than that of the CNN+GRU model, and the accuracy of the CNN+GRU model is higher than that of the CNN model. The accuracy of CNN model was successively higher than that of LSTM, BI-GRU and GRU model. The fusion model of BI-GRU +Attention+Capsule adopted in this paper has the highest accuracy among all the models. In conclusion, the fusion model of BI-GRU+Attention+Capsule effectively improves the accuracy of text sentiment classification.\",\"PeriodicalId\":387664,\"journal\":{\"name\":\"Academic Journal of Computing & Information Science\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Journal of Computing & Information Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36227/techrxiv.14863401.v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Computing & Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36227/techrxiv.14863401.v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文以开放影评数据集IMDB的情感分析任务为基础,结合双向GRU、注意力和胶囊,设计并实现了BI-GRU+注意力+胶囊双向GRU、注意力和胶囊融合的情感分析模型。并与LSTM、CNN、GRU、BI-GRU、CNN+GRU、GRU+CNN等6种深度学习模型进行了比较。实验结果表明,结合Attention和capsule的BI-GRU模型的精度高于其他6种模型,GRU+CNN模型的精度高于CNN+GRU模型,CNN+GRU模型的精度高于CNN模型。CNN模型的精度依次高于LSTM、BI-GRU和GRU模型。本文采用的BI-GRU +Attention+Capsule融合模型在所有模型中准确率最高。综上所述,BI-GRU+Attention+Capsule的融合模型有效提高了文本情感分类的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment Analysis of Film Reviews Based on BI-GRU +Attention+Capsule Fusion
In this paper, a sentiment analysis model based on the bi-directional GRU, Attention and Capusle fusion of BI-GRU+Attention+Capsule was designed and implemented based on the sentiment analysis task of the open film review data set IMDB, and combined with the bi-directional GRU, Attention and Capsule. It is compared with six deep learning models, such as LSTM, CNN, GRU, BI-GRU, CNN+GRU and GRU+CNN. The experimental results show that the accuracy of the BI-GRU model combined with Attention and Capusule is higher than the other six models, and the accuracy of the GRU+CNN model is higher than that of the CNN+GRU model, and the accuracy of the CNN+GRU model is higher than that of the CNN model. The accuracy of CNN model was successively higher than that of LSTM, BI-GRU and GRU model. The fusion model of BI-GRU +Attention+Capsule adopted in this paper has the highest accuracy among all the models. In conclusion, the fusion model of BI-GRU+Attention+Capsule effectively improves the accuracy of text sentiment classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信