{"title":"基于BI-GRU +注意力+胶囊融合的影评情感分析","authors":"Zhifei Hu, P. sup","doi":"10.36227/techrxiv.14863401.v1","DOIUrl":null,"url":null,"abstract":"In this paper, a sentiment analysis model based on the bi-directional GRU, Attention and Capusle fusion of BI-GRU+Attention+Capsule was designed and implemented based on the sentiment analysis task of the open film review data set IMDB, and combined with the bi-directional GRU, Attention and Capsule. It is compared with six deep learning models, such as LSTM, CNN, GRU, BI-GRU, CNN+GRU and GRU+CNN. The experimental results show that the accuracy of the BI-GRU model combined with Attention and Capusule is higher than the other six models, and the accuracy of the GRU+CNN model is higher than that of the CNN+GRU model, and the accuracy of the CNN+GRU model is higher than that of the CNN model. The accuracy of CNN model was successively higher than that of LSTM, BI-GRU and GRU model. The fusion model of BI-GRU +Attention+Capsule adopted in this paper has the highest accuracy among all the models. In conclusion, the fusion model of BI-GRU+Attention+Capsule effectively improves the accuracy of text sentiment classification.","PeriodicalId":387664,"journal":{"name":"Academic Journal of Computing & Information Science","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sentiment Analysis of Film Reviews Based on BI-GRU +Attention+Capsule Fusion\",\"authors\":\"Zhifei Hu, P. sup\",\"doi\":\"10.36227/techrxiv.14863401.v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a sentiment analysis model based on the bi-directional GRU, Attention and Capusle fusion of BI-GRU+Attention+Capsule was designed and implemented based on the sentiment analysis task of the open film review data set IMDB, and combined with the bi-directional GRU, Attention and Capsule. It is compared with six deep learning models, such as LSTM, CNN, GRU, BI-GRU, CNN+GRU and GRU+CNN. The experimental results show that the accuracy of the BI-GRU model combined with Attention and Capusule is higher than the other six models, and the accuracy of the GRU+CNN model is higher than that of the CNN+GRU model, and the accuracy of the CNN+GRU model is higher than that of the CNN model. The accuracy of CNN model was successively higher than that of LSTM, BI-GRU and GRU model. The fusion model of BI-GRU +Attention+Capsule adopted in this paper has the highest accuracy among all the models. In conclusion, the fusion model of BI-GRU+Attention+Capsule effectively improves the accuracy of text sentiment classification.\",\"PeriodicalId\":387664,\"journal\":{\"name\":\"Academic Journal of Computing & Information Science\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Journal of Computing & Information Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36227/techrxiv.14863401.v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Computing & Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36227/techrxiv.14863401.v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sentiment Analysis of Film Reviews Based on BI-GRU +Attention+Capsule Fusion
In this paper, a sentiment analysis model based on the bi-directional GRU, Attention and Capusle fusion of BI-GRU+Attention+Capsule was designed and implemented based on the sentiment analysis task of the open film review data set IMDB, and combined with the bi-directional GRU, Attention and Capsule. It is compared with six deep learning models, such as LSTM, CNN, GRU, BI-GRU, CNN+GRU and GRU+CNN. The experimental results show that the accuracy of the BI-GRU model combined with Attention and Capusule is higher than the other six models, and the accuracy of the GRU+CNN model is higher than that of the CNN+GRU model, and the accuracy of the CNN+GRU model is higher than that of the CNN model. The accuracy of CNN model was successively higher than that of LSTM, BI-GRU and GRU model. The fusion model of BI-GRU +Attention+Capsule adopted in this paper has the highest accuracy among all the models. In conclusion, the fusion model of BI-GRU+Attention+Capsule effectively improves the accuracy of text sentiment classification.