SAX导航器:通过层次聚类的时间序列探索

N. Ruta, N. Sawada, K. McKeough, M. Behrisch, J. Beyer
{"title":"SAX导航器:通过层次聚类的时间序列探索","authors":"N. Ruta, N. Sawada, K. McKeough, M. Behrisch, J. Beyer","doi":"10.1109/VISUAL.2019.8933618","DOIUrl":null,"url":null,"abstract":"Comparing many long time series is challenging to do by hand. Clustering time series enables data analysts to discover relevance between and anomalies among multiple time series. However, even after reasonable clustering, analysts have to scrutinize correlations between clusters or similarities within a cluster. We developed SAX Navigator, an interactive visualization tool, that allows users to hierarchically explore global patterns as well as individual observations across large collections of time series data. Our visualization provides a unique way to navigate time series that involves a \"vocabulary of patterns\" developed by using a dimensionality reduction technique, Symbolic Aggregate approXimation (SAX). With SAX, the time series data clusters efficiently and is quicker to query at scale. We demonstrate the ability of SAX Navigator to analyze patterns in large time series data based on three case studies for an astronomy data set. We verify the usability of our system through a think-aloud study with an astronomy domain scientist.","PeriodicalId":192801,"journal":{"name":"2019 IEEE Visualization Conference (VIS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"SAX Navigator: Time Series Exploration through Hierarchical Clustering\",\"authors\":\"N. Ruta, N. Sawada, K. McKeough, M. Behrisch, J. Beyer\",\"doi\":\"10.1109/VISUAL.2019.8933618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Comparing many long time series is challenging to do by hand. Clustering time series enables data analysts to discover relevance between and anomalies among multiple time series. However, even after reasonable clustering, analysts have to scrutinize correlations between clusters or similarities within a cluster. We developed SAX Navigator, an interactive visualization tool, that allows users to hierarchically explore global patterns as well as individual observations across large collections of time series data. Our visualization provides a unique way to navigate time series that involves a \\\"vocabulary of patterns\\\" developed by using a dimensionality reduction technique, Symbolic Aggregate approXimation (SAX). With SAX, the time series data clusters efficiently and is quicker to query at scale. We demonstrate the ability of SAX Navigator to analyze patterns in large time series data based on three case studies for an astronomy data set. We verify the usability of our system through a think-aloud study with an astronomy domain scientist.\",\"PeriodicalId\":192801,\"journal\":{\"name\":\"2019 IEEE Visualization Conference (VIS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Visualization Conference (VIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VISUAL.2019.8933618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visualization Conference (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2019.8933618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

手工比较许多长时间序列是具有挑战性的。聚类时间序列使数据分析人员能够发现多个时间序列之间的相关性和异常。然而,即使在合理的聚类之后,分析人员也必须仔细检查聚类之间的相关性或聚类内部的相似性。我们开发了SAX Navigator,这是一种交互式可视化工具,它允许用户分层地探索全局模式以及跨大量时间序列数据集的单个观察结果。我们的可视化提供了一种独特的方式来导航时间序列,该时间序列涉及使用降维技术符号聚合近似(SAX)开发的“模式词汇表”。使用SAX,时间序列数据可以有效地聚类,并且可以更快地进行大规模查询。我们通过对天文学数据集的三个案例研究,演示了SAX Navigator分析大型时间序列数据中的模式的能力。我们通过与天文学领域的科学家一起进行有声思考研究来验证我们系统的可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SAX Navigator: Time Series Exploration through Hierarchical Clustering
Comparing many long time series is challenging to do by hand. Clustering time series enables data analysts to discover relevance between and anomalies among multiple time series. However, even after reasonable clustering, analysts have to scrutinize correlations between clusters or similarities within a cluster. We developed SAX Navigator, an interactive visualization tool, that allows users to hierarchically explore global patterns as well as individual observations across large collections of time series data. Our visualization provides a unique way to navigate time series that involves a "vocabulary of patterns" developed by using a dimensionality reduction technique, Symbolic Aggregate approXimation (SAX). With SAX, the time series data clusters efficiently and is quicker to query at scale. We demonstrate the ability of SAX Navigator to analyze patterns in large time series data based on three case studies for an astronomy data set. We verify the usability of our system through a think-aloud study with an astronomy domain scientist.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信