Ashraf Bsebsu, G. Zheng, S. Lambotharan, K. Cumanan, Basil AsSadhan
{"title":"联合波束形成和接收控制的缓存启用云- ran与有限的前传容量","authors":"Ashraf Bsebsu, G. Zheng, S. Lambotharan, K. Cumanan, Basil AsSadhan","doi":"10.1049/iet-spr.2019.0247","DOIUrl":null,"url":null,"abstract":"Caching is a promising solution for the cloud radio access network (Cloud-RAN) to mitigate the traffic load problem in the fronthaul links. Multiuser downlink beamforming plays an important role for efficient utilization of spectrum and transmission power while satisfying the user’s quality of service (QoS) requirements. When the number of users exceeds the serving capacity of the network, certain users will have to be dropped or re-scheduled. This is normally achieved by appropriate admission control mechanisms. Introducing local storage or cache at the remote radio heads (RRHs) where some popular contents are cached, we propose beamforming and admission control technique for cache-enabled Cloud-RAN in the downlink. This minimizes the total network cost including power and fronthaul cost while admitting as many users as possible. We formulate this multi-objective optimization problem as a single objective optimization problem. The original problem which is mixed-integer non-linear program (MINLP) is first co verted to the mixed-integer second order cone programming form (MISOCP). Branch and Bound (BnB) algorithm is then used to determine the optimal and suboptimal solutions. Simulation study has been conducted to assess the performance of both methods.","PeriodicalId":272888,"journal":{"name":"IET Signal Process.","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Joint beamforming and admission control for cache-enabled Cloud-RAN with limited fronthaul capacity\",\"authors\":\"Ashraf Bsebsu, G. Zheng, S. Lambotharan, K. Cumanan, Basil AsSadhan\",\"doi\":\"10.1049/iet-spr.2019.0247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Caching is a promising solution for the cloud radio access network (Cloud-RAN) to mitigate the traffic load problem in the fronthaul links. Multiuser downlink beamforming plays an important role for efficient utilization of spectrum and transmission power while satisfying the user’s quality of service (QoS) requirements. When the number of users exceeds the serving capacity of the network, certain users will have to be dropped or re-scheduled. This is normally achieved by appropriate admission control mechanisms. Introducing local storage or cache at the remote radio heads (RRHs) where some popular contents are cached, we propose beamforming and admission control technique for cache-enabled Cloud-RAN in the downlink. This minimizes the total network cost including power and fronthaul cost while admitting as many users as possible. We formulate this multi-objective optimization problem as a single objective optimization problem. The original problem which is mixed-integer non-linear program (MINLP) is first co verted to the mixed-integer second order cone programming form (MISOCP). Branch and Bound (BnB) algorithm is then used to determine the optimal and suboptimal solutions. Simulation study has been conducted to assess the performance of both methods.\",\"PeriodicalId\":272888,\"journal\":{\"name\":\"IET Signal Process.\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/iet-spr.2019.0247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-spr.2019.0247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Joint beamforming and admission control for cache-enabled Cloud-RAN with limited fronthaul capacity
Caching is a promising solution for the cloud radio access network (Cloud-RAN) to mitigate the traffic load problem in the fronthaul links. Multiuser downlink beamforming plays an important role for efficient utilization of spectrum and transmission power while satisfying the user’s quality of service (QoS) requirements. When the number of users exceeds the serving capacity of the network, certain users will have to be dropped or re-scheduled. This is normally achieved by appropriate admission control mechanisms. Introducing local storage or cache at the remote radio heads (RRHs) where some popular contents are cached, we propose beamforming and admission control technique for cache-enabled Cloud-RAN in the downlink. This minimizes the total network cost including power and fronthaul cost while admitting as many users as possible. We formulate this multi-objective optimization problem as a single objective optimization problem. The original problem which is mixed-integer non-linear program (MINLP) is first co verted to the mixed-integer second order cone programming form (MISOCP). Branch and Bound (BnB) algorithm is then used to determine the optimal and suboptimal solutions. Simulation study has been conducted to assess the performance of both methods.