关系统一编码器学习的实例研究

NUT@EMNLP Pub Date : 2018-11-01 DOI:10.18653/v1/W18-6126
Lisheng Fu, Bonan Min, Thien Huu Nguyen, R. Grishman
{"title":"关系统一编码器学习的实例研究","authors":"Lisheng Fu, Bonan Min, Thien Huu Nguyen, R. Grishman","doi":"10.18653/v1/W18-6126","DOIUrl":null,"url":null,"abstract":"Typical relation extraction models are trained on a single corpus annotated with a pre-defined relation schema. An individual corpus is often small, and the models may often be biased or overfitted to the corpus. We hypothesize that we can learn a better representation by combining multiple relation datasets. We attempt to use a shared encoder to learn the unified feature representation and to augment it with regularization by adversarial training. The additional corpora feeding the encoder can help to learn a better feature representation layer even though the relation schemas are different. We use ACE05 and ERE datasets as our case study for experiments. The multi-task model obtains significant improvement on both datasets.","PeriodicalId":207795,"journal":{"name":"NUT@EMNLP","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Case Study on Learning a Unified Encoder of Relations\",\"authors\":\"Lisheng Fu, Bonan Min, Thien Huu Nguyen, R. Grishman\",\"doi\":\"10.18653/v1/W18-6126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Typical relation extraction models are trained on a single corpus annotated with a pre-defined relation schema. An individual corpus is often small, and the models may often be biased or overfitted to the corpus. We hypothesize that we can learn a better representation by combining multiple relation datasets. We attempt to use a shared encoder to learn the unified feature representation and to augment it with regularization by adversarial training. The additional corpora feeding the encoder can help to learn a better feature representation layer even though the relation schemas are different. We use ACE05 and ERE datasets as our case study for experiments. The multi-task model obtains significant improvement on both datasets.\",\"PeriodicalId\":207795,\"journal\":{\"name\":\"NUT@EMNLP\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NUT@EMNLP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W18-6126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NUT@EMNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-6126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

典型的关系提取模型是在一个带有预定义关系模式注释的语料库上训练的。单个语料库通常很小,模型可能经常对语料库有偏差或过拟合。我们假设我们可以通过组合多个关系数据集来学习更好的表示。我们尝试使用共享编码器来学习统一的特征表示,并通过对抗性训练对其进行正则化。提供给编码器的额外语料库可以帮助学习更好的特征表示层,即使关系模式不同。我们使用ACE05和ERE数据集作为我们的实验案例研究。多任务模型在两个数据集上都得到了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Case Study on Learning a Unified Encoder of Relations
Typical relation extraction models are trained on a single corpus annotated with a pre-defined relation schema. An individual corpus is often small, and the models may often be biased or overfitted to the corpus. We hypothesize that we can learn a better representation by combining multiple relation datasets. We attempt to use a shared encoder to learn the unified feature representation and to augment it with regularization by adversarial training. The additional corpora feeding the encoder can help to learn a better feature representation layer even though the relation schemas are different. We use ACE05 and ERE datasets as our case study for experiments. The multi-task model obtains significant improvement on both datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信