55纳米CMOS双波段射频接收机,用于GPS和指南针系统

Songting Li, Jiancheng Li, Xiaochen Gu, Hongyi Wang, Jianfei Wu, Dun Yan, Z. Zhuang
{"title":"55纳米CMOS双波段射频接收机,用于GPS和指南针系统","authors":"Songting Li, Jiancheng Li, Xiaochen Gu, Hongyi Wang, Jianfei Wu, Dun Yan, Z. Zhuang","doi":"10.1109/ESSCIRC.2013.6649100","DOIUrl":null,"url":null,"abstract":"A fully integrated dual-band RF receiver with a low-IF architecture is designed and implemented for GPS-L1 and Compass-B1 in a 55-nm CMOS process. The receiver incorporates two independent IF channels with 2 or 4 MHz bandwidth to receive the dual-band signals around 1.57 GHz respectively. By implementing a flexible frequency plan, the RF front-end and frequency synthesizer are shared for the dual-band operation to save power consumption and chip area, as well as avoid any LO crosstalk. A digital automatic gain control (AGC) loop is utilized to improve the receiver's robustness by optimizing the conversion gain of the analog-to-digital converter (ADC). While drawing about 20 mA per channel from a 1.2 V supply, this RF receiver achieves a minimum noise figure (NF) of about 1.8 dB, an image rejection (IMR) of more than 35 dB, a maximum voltage gain of about 110 dB, a gain dynamic range of more than 68 dB, and an input-referred 1 dB compression point (P1dB) of about -36.5 dBm with an active die area of 1.5 ×1.4 mm2 for the whole chip.","PeriodicalId":183620,"journal":{"name":"2013 Proceedings of the ESSCIRC (ESSCIRC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dual-band RF receiver for GPS and compass systems in 55-nm CMOS\",\"authors\":\"Songting Li, Jiancheng Li, Xiaochen Gu, Hongyi Wang, Jianfei Wu, Dun Yan, Z. Zhuang\",\"doi\":\"10.1109/ESSCIRC.2013.6649100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fully integrated dual-band RF receiver with a low-IF architecture is designed and implemented for GPS-L1 and Compass-B1 in a 55-nm CMOS process. The receiver incorporates two independent IF channels with 2 or 4 MHz bandwidth to receive the dual-band signals around 1.57 GHz respectively. By implementing a flexible frequency plan, the RF front-end and frequency synthesizer are shared for the dual-band operation to save power consumption and chip area, as well as avoid any LO crosstalk. A digital automatic gain control (AGC) loop is utilized to improve the receiver's robustness by optimizing the conversion gain of the analog-to-digital converter (ADC). While drawing about 20 mA per channel from a 1.2 V supply, this RF receiver achieves a minimum noise figure (NF) of about 1.8 dB, an image rejection (IMR) of more than 35 dB, a maximum voltage gain of about 110 dB, a gain dynamic range of more than 68 dB, and an input-referred 1 dB compression point (P1dB) of about -36.5 dBm with an active die area of 1.5 ×1.4 mm2 for the whole chip.\",\"PeriodicalId\":183620,\"journal\":{\"name\":\"2013 Proceedings of the ESSCIRC (ESSCIRC)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Proceedings of the ESSCIRC (ESSCIRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSCIRC.2013.6649100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Proceedings of the ESSCIRC (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2013.6649100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采用55纳米CMOS工艺,为GPS-L1和Compass-B1设计并实现了低中频架构的全集成双频射频接收机。接收机采用2 MHz或4 MHz带宽的两个独立中频通道,分别接收1.57 GHz左右的双频信号。通过实施灵活的频率计划,射频前端和频率合成器共享双频工作,以节省功耗和芯片面积,并避免任何本LO串扰。利用数字自动增益控制(AGC)环路优化模数转换器(ADC)的转换增益,提高接收机的鲁棒性。当从1.2 V电源中每通道吸收约20 mA时,该射频接收器的最小噪声系数(NF)约为1.8 dB,图像抑制(IMR)超过35 dB,最大电压增益约为110 dB,增益动态范围超过68 dB,输入参考1db压缩点(P1dB)约为-36.5 dBm,整个芯片的有效芯片面积为1.5 ×1.4 mm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual-band RF receiver for GPS and compass systems in 55-nm CMOS
A fully integrated dual-band RF receiver with a low-IF architecture is designed and implemented for GPS-L1 and Compass-B1 in a 55-nm CMOS process. The receiver incorporates two independent IF channels with 2 or 4 MHz bandwidth to receive the dual-band signals around 1.57 GHz respectively. By implementing a flexible frequency plan, the RF front-end and frequency synthesizer are shared for the dual-band operation to save power consumption and chip area, as well as avoid any LO crosstalk. A digital automatic gain control (AGC) loop is utilized to improve the receiver's robustness by optimizing the conversion gain of the analog-to-digital converter (ADC). While drawing about 20 mA per channel from a 1.2 V supply, this RF receiver achieves a minimum noise figure (NF) of about 1.8 dB, an image rejection (IMR) of more than 35 dB, a maximum voltage gain of about 110 dB, a gain dynamic range of more than 68 dB, and an input-referred 1 dB compression point (P1dB) of about -36.5 dBm with an active die area of 1.5 ×1.4 mm2 for the whole chip.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信