基于结构图特征的生物医学文献检索系统

Harikrishna G. N. Rai, K. Deepak, P. R. Krishna
{"title":"基于结构图特征的生物医学文献检索系统","authors":"Harikrishna G. N. Rai, K. Deepak, P. R. Krishna","doi":"10.4018/jkdb.2012010103","DOIUrl":null,"url":null,"abstract":"Multi-modal and Unstructured nature of documents make their retrieval from healthcare document repositories a challenging task. Text based retrieval is the conventional approach used for solving this problem. In this paper, the authors explore an alternate avenue of using embedded figures for the retrieval task. Usually, context of a document is directly reflected in the associated figures, therefore embedded text within these figures along with image features have been used for similarity based retrieval of figures. The present work demonstrates that image features describing the structural properties of figures are sufficient for the figure retrieval task. First, the authors analyze the problem of figure retrieval from biomedical literature and identify significant classes of figures. Second, they use edge information as a means to discriminate between structural properties of each figure category. Finally, the authors present a methodology using a novel feature descriptor namely Fourier Edge Orientation Autocorrelogram FEOAC to describe structural properties of figures and build an effective Biomedical document retrieval system. The experimental results demonstrate the better retrieval performance and overall improvement of FEOAC for figure retrieval task, especially when most of the edge information is retained. Apart from invariance to scale, rotation and non-uniform illumination, the proposed feature descriptor is shown to be relatively robust to noisy edges.","PeriodicalId":160270,"journal":{"name":"Int. J. Knowl. Discov. Bioinform.","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Figure Based Biomedical Document Retrieval System using Structural Image Features\",\"authors\":\"Harikrishna G. N. Rai, K. Deepak, P. R. Krishna\",\"doi\":\"10.4018/jkdb.2012010103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-modal and Unstructured nature of documents make their retrieval from healthcare document repositories a challenging task. Text based retrieval is the conventional approach used for solving this problem. In this paper, the authors explore an alternate avenue of using embedded figures for the retrieval task. Usually, context of a document is directly reflected in the associated figures, therefore embedded text within these figures along with image features have been used for similarity based retrieval of figures. The present work demonstrates that image features describing the structural properties of figures are sufficient for the figure retrieval task. First, the authors analyze the problem of figure retrieval from biomedical literature and identify significant classes of figures. Second, they use edge information as a means to discriminate between structural properties of each figure category. Finally, the authors present a methodology using a novel feature descriptor namely Fourier Edge Orientation Autocorrelogram FEOAC to describe structural properties of figures and build an effective Biomedical document retrieval system. The experimental results demonstrate the better retrieval performance and overall improvement of FEOAC for figure retrieval task, especially when most of the edge information is retained. Apart from invariance to scale, rotation and non-uniform illumination, the proposed feature descriptor is shown to be relatively robust to noisy edges.\",\"PeriodicalId\":160270,\"journal\":{\"name\":\"Int. J. Knowl. Discov. Bioinform.\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Knowl. Discov. Bioinform.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jkdb.2012010103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Discov. Bioinform.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jkdb.2012010103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

文档的多模式和非结构化特性使得从医疗保健文档存储库中检索文档成为一项具有挑战性的任务。基于文本的检索是解决这一问题的传统方法。在本文中,作者探索了使用嵌入式图形检索任务的替代途径。通常,文档的上下文直接反映在相关的图形中,因此,在这些图形中嵌入文本以及图像特征已被用于基于相似性的图形检索。目前的研究表明,描述图形结构特性的图像特征足以用于图形检索任务。首先,作者分析了生物医学文献中图形检索的问题,并确定了重要的图形类别。其次,他们使用边缘信息作为区分每个图形类别的结构属性的手段。最后,作者提出了一种新的特征描述符,即傅立叶边缘方向自相关图(FEOAC)来描述图形的结构特性,并建立了一个有效的生物医学文献检索系统。实验结果表明,FEOAC在图形检索任务中具有更好的检索性能和整体改进,特别是在保留大部分边缘信息的情况下。除了对尺度、旋转和非均匀光照的不变性外,所提出的特征描述符对噪声边缘具有相对的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Figure Based Biomedical Document Retrieval System using Structural Image Features
Multi-modal and Unstructured nature of documents make their retrieval from healthcare document repositories a challenging task. Text based retrieval is the conventional approach used for solving this problem. In this paper, the authors explore an alternate avenue of using embedded figures for the retrieval task. Usually, context of a document is directly reflected in the associated figures, therefore embedded text within these figures along with image features have been used for similarity based retrieval of figures. The present work demonstrates that image features describing the structural properties of figures are sufficient for the figure retrieval task. First, the authors analyze the problem of figure retrieval from biomedical literature and identify significant classes of figures. Second, they use edge information as a means to discriminate between structural properties of each figure category. Finally, the authors present a methodology using a novel feature descriptor namely Fourier Edge Orientation Autocorrelogram FEOAC to describe structural properties of figures and build an effective Biomedical document retrieval system. The experimental results demonstrate the better retrieval performance and overall improvement of FEOAC for figure retrieval task, especially when most of the edge information is retained. Apart from invariance to scale, rotation and non-uniform illumination, the proposed feature descriptor is shown to be relatively robust to noisy edges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信