Christoph Müller, Stephan Steglich, Sandra Groß, Paul Kremer
{"title":"基于机器学习的HDR视频内容VMAF预测","authors":"Christoph Müller, Stephan Steglich, Sandra Groß, Paul Kremer","doi":"10.1145/3587819.3593941","DOIUrl":null,"url":null,"abstract":"This paper presents a methodology for predicting VMAF video quality scores for high dynamic range (HDR) video content using machine learning. To train the ML model, we are collecting a dataset of HDR and converted SDR video clips, as well as their corresponding objective video quality scores, specifically the Video Multimethod Assessment Fusion (VMAF) values. A 3D convolutional neural network (3D-CNN) model is being trained on the collected dataset. Finally, a hands-on demonstrator is developed to showcase the newly predicted HDR-VMAF metric in comparison to VMAF and other metric values for SDR content, and to conduct further validation with user testing.","PeriodicalId":330983,"journal":{"name":"Proceedings of the 14th Conference on ACM Multimedia Systems","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine-learning based VMAF prediction for HDR video content\",\"authors\":\"Christoph Müller, Stephan Steglich, Sandra Groß, Paul Kremer\",\"doi\":\"10.1145/3587819.3593941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a methodology for predicting VMAF video quality scores for high dynamic range (HDR) video content using machine learning. To train the ML model, we are collecting a dataset of HDR and converted SDR video clips, as well as their corresponding objective video quality scores, specifically the Video Multimethod Assessment Fusion (VMAF) values. A 3D convolutional neural network (3D-CNN) model is being trained on the collected dataset. Finally, a hands-on demonstrator is developed to showcase the newly predicted HDR-VMAF metric in comparison to VMAF and other metric values for SDR content, and to conduct further validation with user testing.\",\"PeriodicalId\":330983,\"journal\":{\"name\":\"Proceedings of the 14th Conference on ACM Multimedia Systems\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 14th Conference on ACM Multimedia Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3587819.3593941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th Conference on ACM Multimedia Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3587819.3593941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine-learning based VMAF prediction for HDR video content
This paper presents a methodology for predicting VMAF video quality scores for high dynamic range (HDR) video content using machine learning. To train the ML model, we are collecting a dataset of HDR and converted SDR video clips, as well as their corresponding objective video quality scores, specifically the Video Multimethod Assessment Fusion (VMAF) values. A 3D convolutional neural network (3D-CNN) model is being trained on the collected dataset. Finally, a hands-on demonstrator is developed to showcase the newly predicted HDR-VMAF metric in comparison to VMAF and other metric values for SDR content, and to conduct further validation with user testing.