用波前传感法测定图案晶圆片表面的平整度

A. Nutsch, L. Pfitzner, T. Grandin, X. Levecq, S. Bucourt
{"title":"用波前传感法测定图案晶圆片表面的平整度","authors":"A. Nutsch, L. Pfitzner, T. Grandin, X. Levecq, S. Bucourt","doi":"10.1117/12.814535","DOIUrl":null,"url":null,"abstract":"New lithography technologies, as for example Extreme Ultra Violet (EUV), require high flatness on the exposure surfaces as the depth of focus is impacted. It is essential for semiconductor manufacturing to measure and control flatness of wafer surfaces at nanometer scale. In-plane geometrical defects on wafer surfaces following Chemical Mechanical Planarization (CMP) processing in the lateral millimeter range and in vertical dimensions in the nanometer range are of increasing importance. They will become a severe yield limiting factor in the 32 nm generations and below. This paper shows the result from improvement and optimization of metrology using wavefront sensing methods according to Makyoh and Shack Hartmann. Magnification and increased density of measurement points were identified to improve the existing performance with respect to vertical resolution significantly below 100 nm. The achieved lateral resolution on the wafer surface was 750 μm. The accuracy of the measurement on patterned wafer surfaces was determined to be less than 15 nm. The accuracy was determined by repeating the topography measurement and filtering of the according data of the sensors using cross section analysis and spatial processing with double Gaussian filters. The samples were taken from different manufacturing steps, such as Shallow Trench Isolation (STI) and interconnect metallization. Wavefront sensing based on methods according to Makyoh and Shack Hartmann enabled instantaneous and non-destructive flatness measurement of surfaces.","PeriodicalId":191475,"journal":{"name":"International Symposium on Laser Metrology","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Determination of flatness on patterned wafer surfaces using wavefront sensing methods\",\"authors\":\"A. Nutsch, L. Pfitzner, T. Grandin, X. Levecq, S. Bucourt\",\"doi\":\"10.1117/12.814535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New lithography technologies, as for example Extreme Ultra Violet (EUV), require high flatness on the exposure surfaces as the depth of focus is impacted. It is essential for semiconductor manufacturing to measure and control flatness of wafer surfaces at nanometer scale. In-plane geometrical defects on wafer surfaces following Chemical Mechanical Planarization (CMP) processing in the lateral millimeter range and in vertical dimensions in the nanometer range are of increasing importance. They will become a severe yield limiting factor in the 32 nm generations and below. This paper shows the result from improvement and optimization of metrology using wavefront sensing methods according to Makyoh and Shack Hartmann. Magnification and increased density of measurement points were identified to improve the existing performance with respect to vertical resolution significantly below 100 nm. The achieved lateral resolution on the wafer surface was 750 μm. The accuracy of the measurement on patterned wafer surfaces was determined to be less than 15 nm. The accuracy was determined by repeating the topography measurement and filtering of the according data of the sensors using cross section analysis and spatial processing with double Gaussian filters. The samples were taken from different manufacturing steps, such as Shallow Trench Isolation (STI) and interconnect metallization. Wavefront sensing based on methods according to Makyoh and Shack Hartmann enabled instantaneous and non-destructive flatness measurement of surfaces.\",\"PeriodicalId\":191475,\"journal\":{\"name\":\"International Symposium on Laser Metrology\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Laser Metrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.814535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Laser Metrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.814535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

新的光刻技术,如极紫外(EUV),要求曝光表面的高度平整度,因为聚焦深度受到影响。在纳米尺度上测量和控制晶圆表面的平整度是半导体制造的关键。化学机械平面化(CMP)加工后晶圆表面的平面内几何缺陷在横向毫米范围内和垂直尺寸在纳米范围内变得越来越重要。它们将成为32纳米及以下一代的严重产量限制因素。本文介绍了根据Makyoh和Shack Hartmann的波前传感方法对测量方法进行改进和优化的结果。放大和增加测量点的密度可以显著改善现有的垂直分辨率,显著低于100 nm。晶圆表面的横向分辨率为750 μm。在晶圆表面的测量精度小于15 nm。通过重复地形测量并对传感器的相应数据进行截面分析和双高斯滤波器的空间处理来确定精度。样品取自不同的制造步骤,如浅沟隔离(STI)和互连金属化。基于Makyoh和Shack Hartmann方法的波前传感实现了对表面平面度的瞬时无损测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of flatness on patterned wafer surfaces using wavefront sensing methods
New lithography technologies, as for example Extreme Ultra Violet (EUV), require high flatness on the exposure surfaces as the depth of focus is impacted. It is essential for semiconductor manufacturing to measure and control flatness of wafer surfaces at nanometer scale. In-plane geometrical defects on wafer surfaces following Chemical Mechanical Planarization (CMP) processing in the lateral millimeter range and in vertical dimensions in the nanometer range are of increasing importance. They will become a severe yield limiting factor in the 32 nm generations and below. This paper shows the result from improvement and optimization of metrology using wavefront sensing methods according to Makyoh and Shack Hartmann. Magnification and increased density of measurement points were identified to improve the existing performance with respect to vertical resolution significantly below 100 nm. The achieved lateral resolution on the wafer surface was 750 μm. The accuracy of the measurement on patterned wafer surfaces was determined to be less than 15 nm. The accuracy was determined by repeating the topography measurement and filtering of the according data of the sensors using cross section analysis and spatial processing with double Gaussian filters. The samples were taken from different manufacturing steps, such as Shallow Trench Isolation (STI) and interconnect metallization. Wavefront sensing based on methods according to Makyoh and Shack Hartmann enabled instantaneous and non-destructive flatness measurement of surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信