分类模型在信用卡欺诈检测中的应用

Aihua Shen, Rencheng Tong, Yaochen Deng
{"title":"分类模型在信用卡欺诈检测中的应用","authors":"Aihua Shen, Rencheng Tong, Yaochen Deng","doi":"10.1109/ICSSSM.2007.4280163","DOIUrl":null,"url":null,"abstract":"Along with the great increase in credit card transactions, credit card fraud has become increasingly rampant in recent years. This study investigates the efficacy of applying classification models to credit card fraud detection problems. Three different classification methods, i.e. decision tree, neural networks and logistic regression are tested for their applicability in fraud detections. This paper provides a useful framework to choose the best model to recognize the credit card fraud risk.","PeriodicalId":153603,"journal":{"name":"2007 International Conference on Service Systems and Service Management","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"216","resultStr":"{\"title\":\"Application of Classification Models on Credit Card Fraud Detection\",\"authors\":\"Aihua Shen, Rencheng Tong, Yaochen Deng\",\"doi\":\"10.1109/ICSSSM.2007.4280163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Along with the great increase in credit card transactions, credit card fraud has become increasingly rampant in recent years. This study investigates the efficacy of applying classification models to credit card fraud detection problems. Three different classification methods, i.e. decision tree, neural networks and logistic regression are tested for their applicability in fraud detections. This paper provides a useful framework to choose the best model to recognize the credit card fraud risk.\",\"PeriodicalId\":153603,\"journal\":{\"name\":\"2007 International Conference on Service Systems and Service Management\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"216\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Service Systems and Service Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSSM.2007.4280163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Service Systems and Service Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSSM.2007.4280163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 216

摘要

随着信用卡交易的大量增加,信用卡诈骗近年来变得越来越猖獗。本研究探讨了将分类模型应用于信用卡欺诈检测问题的有效性。测试了决策树、神经网络和逻辑回归三种不同的分类方法在欺诈检测中的适用性。本文为选择最佳的信用卡欺诈风险识别模型提供了一个有用的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Classification Models on Credit Card Fraud Detection
Along with the great increase in credit card transactions, credit card fraud has become increasingly rampant in recent years. This study investigates the efficacy of applying classification models to credit card fraud detection problems. Three different classification methods, i.e. decision tree, neural networks and logistic regression are tested for their applicability in fraud detections. This paper provides a useful framework to choose the best model to recognize the credit card fraud risk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信