希尔伯特Coq中的第十问题(扩展版)

Dominique Larchey-Wendling, Y. Forster
{"title":"希尔伯特Coq中的第十问题(扩展版)","authors":"Dominique Larchey-Wendling, Y. Forster","doi":"10.46298/lmcs-18(1:35)2022","DOIUrl":null,"url":null,"abstract":"We formalise the undecidability of solvability of Diophantine equations, i.e.\npolynomial equations over natural numbers, in Coq's constructive type theory.\nTo do so, we give the first full mechanisation of the\nDavis-Putnam-Robinson-Matiyasevich theorem, stating that every recursively\nenumerable problem -- in our case by a Minsky machine -- is Diophantine. We\nobtain an elegant and comprehensible proof by using a synthetic approach to\ncomputability and by introducing Conway's FRACTRAN language as intermediate\nlayer. Additionally, we prove the reverse direction and show that every\nDiophantine relation is recognisable by $\\mu$-recursive functions and give a\ncertified compiler from $\\mu$-recursive functions to Minsky machines.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hilbert's Tenth Problem in Coq (Extended Version)\",\"authors\":\"Dominique Larchey-Wendling, Y. Forster\",\"doi\":\"10.46298/lmcs-18(1:35)2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We formalise the undecidability of solvability of Diophantine equations, i.e.\\npolynomial equations over natural numbers, in Coq's constructive type theory.\\nTo do so, we give the first full mechanisation of the\\nDavis-Putnam-Robinson-Matiyasevich theorem, stating that every recursively\\nenumerable problem -- in our case by a Minsky machine -- is Diophantine. We\\nobtain an elegant and comprehensible proof by using a synthetic approach to\\ncomputability and by introducing Conway's FRACTRAN language as intermediate\\nlayer. Additionally, we prove the reverse direction and show that every\\nDiophantine relation is recognisable by $\\\\mu$-recursive functions and give a\\ncertified compiler from $\\\\mu$-recursive functions to Minsky machines.\",\"PeriodicalId\":314387,\"journal\":{\"name\":\"Log. Methods Comput. Sci.\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. Methods Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/lmcs-18(1:35)2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-18(1:35)2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在Coq的构造型理论中,我们形式化了丢芬图方程(即自然数上的多项式方程)可解性的不可判定性。为了做到这一点,我们给出了戴维斯-普特南-罗宾逊-马蒂亚谢维奇定理的第一个完全机械化,说明每一个递归可枚举的问题——在我们的例子中是明斯基机器——都是丢芬图。通过使用可计算性的综合方法和引入Conway的FRACTRAN语言作为中间层,我们获得了一个优雅且易于理解的证明。此外,我们证明了相反的方向,证明了每一个丢番图关系都可以被$\mu$递归函数识别,并给出了从$\mu$递归函数到明斯基机的认证编译器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hilbert's Tenth Problem in Coq (Extended Version)
We formalise the undecidability of solvability of Diophantine equations, i.e. polynomial equations over natural numbers, in Coq's constructive type theory. To do so, we give the first full mechanisation of the Davis-Putnam-Robinson-Matiyasevich theorem, stating that every recursively enumerable problem -- in our case by a Minsky machine -- is Diophantine. We obtain an elegant and comprehensible proof by using a synthetic approach to computability and by introducing Conway's FRACTRAN language as intermediate layer. Additionally, we prove the reverse direction and show that every Diophantine relation is recognisable by $\mu$-recursive functions and give a certified compiler from $\mu$-recursive functions to Minsky machines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信