基于反向传播的透镜设计优化

Congli Wang, Ni Chen, W. Heidrich
{"title":"基于反向传播的透镜设计优化","authors":"Congli Wang, Ni Chen, W. Heidrich","doi":"10.1117/12.2603675","DOIUrl":null,"url":null,"abstract":"We propose a lens design ray tracing engine that is derivative-aware, using automatic differentiation. This derivative-aware property enables the engine to infer gradients of current design parameters, i.e., how design parameters affect a given error metric (e.g., spot RMS or irradiance values), by back-propagating the derivatives through a computational graph via differentiable ray tracing. Our engine not only enables designers to employ gradient descent and variants for design optimization, but also provides a numerically compatible way to perform back-propagation on both the optical design and the post-processing algorithm (e.g., a neural network), making hardware-software end-to-end designs possible. Examples are demonstrated by freeform designs and joint optics-network optimization for extended-depth-of-field applications.","PeriodicalId":386109,"journal":{"name":"International Optical Design Conference","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Lens design optimization by back-propagation\",\"authors\":\"Congli Wang, Ni Chen, W. Heidrich\",\"doi\":\"10.1117/12.2603675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a lens design ray tracing engine that is derivative-aware, using automatic differentiation. This derivative-aware property enables the engine to infer gradients of current design parameters, i.e., how design parameters affect a given error metric (e.g., spot RMS or irradiance values), by back-propagating the derivatives through a computational graph via differentiable ray tracing. Our engine not only enables designers to employ gradient descent and variants for design optimization, but also provides a numerically compatible way to perform back-propagation on both the optical design and the post-processing algorithm (e.g., a neural network), making hardware-software end-to-end designs possible. Examples are demonstrated by freeform designs and joint optics-network optimization for extended-depth-of-field applications.\",\"PeriodicalId\":386109,\"journal\":{\"name\":\"International Optical Design Conference\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Optical Design Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2603675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Optical Design Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2603675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一个镜头设计光线追踪引擎,是导数感知,使用自动微分。这种导数感知特性使引擎能够推断当前设计参数的梯度,即设计参数如何影响给定的误差度量(例如,点RMS或辐照度值),通过可微光线追踪通过计算图反向传播导数。我们的引擎不仅使设计人员能够使用梯度下降和变体进行设计优化,而且还提供了一种数字兼容的方式来执行光学设计和后处理算法(例如,神经网络)的反向传播,使硬件软件端到端设计成为可能。通过自由曲面设计和扩展景深应用的联合光网络优化实例进行了论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lens design optimization by back-propagation
We propose a lens design ray tracing engine that is derivative-aware, using automatic differentiation. This derivative-aware property enables the engine to infer gradients of current design parameters, i.e., how design parameters affect a given error metric (e.g., spot RMS or irradiance values), by back-propagating the derivatives through a computational graph via differentiable ray tracing. Our engine not only enables designers to employ gradient descent and variants for design optimization, but also provides a numerically compatible way to perform back-propagation on both the optical design and the post-processing algorithm (e.g., a neural network), making hardware-software end-to-end designs possible. Examples are demonstrated by freeform designs and joint optics-network optimization for extended-depth-of-field applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信