一种基于双层聚类的事件驱动高精度数据融合算法

Yu Xiuwu, Fan Feisheng, Zhang Feng, Zhou Lixing
{"title":"一种基于双层聚类的事件驱动高精度数据融合算法","authors":"Yu Xiuwu, Fan Feisheng, Zhang Feng, Zhou Lixing","doi":"10.1109/ICEIEC.2017.8076580","DOIUrl":null,"url":null,"abstract":"In order to ensure the high accuracy of data fusion in the real-time online monitoring of environmental parameters, an event-driven, high-precision data fusion algorithm based on double-layer clustering is proposed in wireless sensor network (EDDCHA). EDDCHA algorithm based on feature extraction in depth learning model and traditional structure clustering routing, established the general event and emergency event double-layer cluster routing model, distinguished the cluster priority order, set the emergency threshold, and realized double-layer cluster Head synchronization data fusion. The simulation results show that EDDHA algorithm can obtain more accurate fusion data in real time under the condition of similar energy consumption and SAEMDA algorithm.","PeriodicalId":163990,"journal":{"name":"2017 7th IEEE International Conference on Electronics Information and Emergency Communication (ICEIEC)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An event-driven high-precision data fusion algorithm based on double-layer clustering\",\"authors\":\"Yu Xiuwu, Fan Feisheng, Zhang Feng, Zhou Lixing\",\"doi\":\"10.1109/ICEIEC.2017.8076580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to ensure the high accuracy of data fusion in the real-time online monitoring of environmental parameters, an event-driven, high-precision data fusion algorithm based on double-layer clustering is proposed in wireless sensor network (EDDCHA). EDDCHA algorithm based on feature extraction in depth learning model and traditional structure clustering routing, established the general event and emergency event double-layer cluster routing model, distinguished the cluster priority order, set the emergency threshold, and realized double-layer cluster Head synchronization data fusion. The simulation results show that EDDHA algorithm can obtain more accurate fusion data in real time under the condition of similar energy consumption and SAEMDA algorithm.\",\"PeriodicalId\":163990,\"journal\":{\"name\":\"2017 7th IEEE International Conference on Electronics Information and Emergency Communication (ICEIEC)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 7th IEEE International Conference on Electronics Information and Emergency Communication (ICEIEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEIEC.2017.8076580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th IEEE International Conference on Electronics Information and Emergency Communication (ICEIEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIEC.2017.8076580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了保证环境参数实时在线监测中数据融合的高精度,提出了一种基于双层聚类的事件驱动的无线传感器网络(EDDCHA)高精度数据融合算法。EDDCHA算法基于深度学习模型中的特征提取和传统结构的聚类路由,建立了一般事件和紧急事件双层聚类路由模型,区分了聚类优先级顺序,设置了紧急阈值,实现了双层簇头同步数据融合。仿真结果表明,在能量消耗与SAEMDA算法相似的情况下,EDDHA算法可以实时获得更精确的融合数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An event-driven high-precision data fusion algorithm based on double-layer clustering
In order to ensure the high accuracy of data fusion in the real-time online monitoring of environmental parameters, an event-driven, high-precision data fusion algorithm based on double-layer clustering is proposed in wireless sensor network (EDDCHA). EDDCHA algorithm based on feature extraction in depth learning model and traditional structure clustering routing, established the general event and emergency event double-layer cluster routing model, distinguished the cluster priority order, set the emergency threshold, and realized double-layer cluster Head synchronization data fusion. The simulation results show that EDDHA algorithm can obtain more accurate fusion data in real time under the condition of similar energy consumption and SAEMDA algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信