一种集成定位与传感的时空信号降维方法

Yi Li, Hanying Zhao, Yuan Shen
{"title":"一种集成定位与传感的时空信号降维方法","authors":"Yi Li, Hanying Zhao, Yuan Shen","doi":"10.1109/MELECON53508.2022.9843131","DOIUrl":null,"url":null,"abstract":"The development of millimeter-wave frequency band and large-scale antenna arrays offers great opportunities for high-accuracy localization and sensing, but at the cost of large communication overheads, big memory, and complex computation. In this context, effectively reducing signal dimension to alleviate resource consumption is essential in practice. In this paper, we propose a spatio-temporal signal dimension reduction method, which reduces signal dimensions without information loss for integrated localization and sensing. Different from the existing reduction methods only considering one domain, we reduce both the temporal and the spatial signal dimensions and reveal the compressible property of the array signals.","PeriodicalId":303656,"journal":{"name":"2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Spatio-Temporal Signal Dimension Reduction Method for Integrated Localization and Sensing\",\"authors\":\"Yi Li, Hanying Zhao, Yuan Shen\",\"doi\":\"10.1109/MELECON53508.2022.9843131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of millimeter-wave frequency band and large-scale antenna arrays offers great opportunities for high-accuracy localization and sensing, but at the cost of large communication overheads, big memory, and complex computation. In this context, effectively reducing signal dimension to alleviate resource consumption is essential in practice. In this paper, we propose a spatio-temporal signal dimension reduction method, which reduces signal dimensions without information loss for integrated localization and sensing. Different from the existing reduction methods only considering one domain, we reduce both the temporal and the spatial signal dimensions and reveal the compressible property of the array signals.\",\"PeriodicalId\":303656,\"journal\":{\"name\":\"2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MELECON53508.2022.9843131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELECON53508.2022.9843131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

毫米波频带和大规模天线阵列的发展为高精度定位和传感提供了巨大的机会,但代价是通信开销大,内存大,计算复杂。在这种情况下,有效地降低信号维数以减少资源消耗在实践中是必不可少的。本文提出一种时空信号降维方法,在不损失信息的情况下降低信号维数,实现定位与传感的集成。与现有的仅考虑一个域的降维方法不同,我们同时降低了信号的时间维和空间维,揭示了阵列信号的可压缩性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Spatio-Temporal Signal Dimension Reduction Method for Integrated Localization and Sensing
The development of millimeter-wave frequency band and large-scale antenna arrays offers great opportunities for high-accuracy localization and sensing, but at the cost of large communication overheads, big memory, and complex computation. In this context, effectively reducing signal dimension to alleviate resource consumption is essential in practice. In this paper, we propose a spatio-temporal signal dimension reduction method, which reduces signal dimensions without information loss for integrated localization and sensing. Different from the existing reduction methods only considering one domain, we reduce both the temporal and the spatial signal dimensions and reveal the compressible property of the array signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信