移动机器人与机载机械臂的神经网络控制器比较

S. Jagannathan, P. S. Shiakolas
{"title":"移动机器人与机载机械臂的神经网络控制器比较","authors":"S. Jagannathan, P. S. Shiakolas","doi":"10.1109/ISIC.1995.525090","DOIUrl":null,"url":null,"abstract":"A systematic approach for modeling and motion control of a mobile vehicle with on-board arm is presented. Two neural network based controllers which feedback linearize the composite system after the incorporation of non-holonomic constraints are considered. The feedback linearization provides an inner loop that accounts for possible motion of the on-board arm. These neural network controllers exhibit learning-while functioning features instead of the traditional learning-then-control training approach. Therefore, the control action is immediate with no off-line-learning phase needed. The case of maintaining a desired course and speed while the on-board arm is allowed to move to its desired orientation is considered. The two neural network algorithms used in designing the controller are backpropagation with e-mod and Hebbian learning with e-mod. Computationally the Hebbian learning with e-mod outperforms the backpropagation with e-mod without any performance degradation. A computational comparison and simulation results are presented in order to justify the theoretical conclusion.","PeriodicalId":219623,"journal":{"name":"Proceedings of Tenth International Symposium on Intelligent Control","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparison of neural network controllers for a mobile robot with an on-board manipulator\",\"authors\":\"S. Jagannathan, P. S. Shiakolas\",\"doi\":\"10.1109/ISIC.1995.525090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A systematic approach for modeling and motion control of a mobile vehicle with on-board arm is presented. Two neural network based controllers which feedback linearize the composite system after the incorporation of non-holonomic constraints are considered. The feedback linearization provides an inner loop that accounts for possible motion of the on-board arm. These neural network controllers exhibit learning-while functioning features instead of the traditional learning-then-control training approach. Therefore, the control action is immediate with no off-line-learning phase needed. The case of maintaining a desired course and speed while the on-board arm is allowed to move to its desired orientation is considered. The two neural network algorithms used in designing the controller are backpropagation with e-mod and Hebbian learning with e-mod. Computationally the Hebbian learning with e-mod outperforms the backpropagation with e-mod without any performance degradation. A computational comparison and simulation results are presented in order to justify the theoretical conclusion.\",\"PeriodicalId\":219623,\"journal\":{\"name\":\"Proceedings of Tenth International Symposium on Intelligent Control\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Tenth International Symposium on Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.1995.525090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Tenth International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1995.525090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种车载机械臂移动车辆的系统建模和运动控制方法。考虑了两种基于神经网络的控制器,在引入非完整约束后对复合系统进行反馈线性化。反馈线性化提供了一个内部循环,可以解释机载手臂的可能运动。这些神经网络控制器表现出边学习边工作的特点,而不是传统的先学习后控制的训练方法。因此,控制动作是即时的,不需要离线学习阶段。在船上的手臂被允许移动到其所需的方向时,保持所需的航向和速度的情况被考虑。设计控制器时采用的两种神经网络算法分别是带e-mod的反向传播算法和带e-mod的Hebbian学习算法。计算上,使用e-mod的Hebbian学习优于使用e-mod的反向传播,且没有任何性能下降。为了验证理论结论,给出了计算比较和仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison of neural network controllers for a mobile robot with an on-board manipulator
A systematic approach for modeling and motion control of a mobile vehicle with on-board arm is presented. Two neural network based controllers which feedback linearize the composite system after the incorporation of non-holonomic constraints are considered. The feedback linearization provides an inner loop that accounts for possible motion of the on-board arm. These neural network controllers exhibit learning-while functioning features instead of the traditional learning-then-control training approach. Therefore, the control action is immediate with no off-line-learning phase needed. The case of maintaining a desired course and speed while the on-board arm is allowed to move to its desired orientation is considered. The two neural network algorithms used in designing the controller are backpropagation with e-mod and Hebbian learning with e-mod. Computationally the Hebbian learning with e-mod outperforms the backpropagation with e-mod without any performance degradation. A computational comparison and simulation results are presented in order to justify the theoretical conclusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信