{"title":"用GARCH模型建模标准普尔孟买证券交易所BANKEX指数波动模式","authors":"","doi":"10.4018/978-1-5225-9269-3.ch013","DOIUrl":null,"url":null,"abstract":"The main objective of this chapter is to estimate volatility patterns in the case of S&P Bombay Stock Exchange (BSE) BANKEX index in India. In recent past, the Indian banking sector was one of the fastest-growing industries and all major banks have been included in S&P BANKEX index as index benchmark constituent companies. The financial econometric framework is based on asymmetric GARCH (1, 1) model which is performed in order to capture asymmetric volatility clustering and leptokurtosis. Data time lag is considered from the first transaction day of January 2002 to last transaction day of June 2014. The empirical results revealed the existence of volatility shocks in the selected time series and also volatility clustering. The volatility impact has generated highly positive clockwise and impacted actual stocks. Moreover, the empirical findings reveal that the BANKEX index grown over 17 times in 12 years and volatility returns have been found present in listed stocks.","PeriodicalId":167061,"journal":{"name":"Emerging Research on Monetary Policy, Banking, and Financial Markets","volume":"113 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Modeling S&P Bombay Stock Exchange BANKEX Index Volatility Patterns Using GARCH Model\",\"authors\":\"\",\"doi\":\"10.4018/978-1-5225-9269-3.ch013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of this chapter is to estimate volatility patterns in the case of S&P Bombay Stock Exchange (BSE) BANKEX index in India. In recent past, the Indian banking sector was one of the fastest-growing industries and all major banks have been included in S&P BANKEX index as index benchmark constituent companies. The financial econometric framework is based on asymmetric GARCH (1, 1) model which is performed in order to capture asymmetric volatility clustering and leptokurtosis. Data time lag is considered from the first transaction day of January 2002 to last transaction day of June 2014. The empirical results revealed the existence of volatility shocks in the selected time series and also volatility clustering. The volatility impact has generated highly positive clockwise and impacted actual stocks. Moreover, the empirical findings reveal that the BANKEX index grown over 17 times in 12 years and volatility returns have been found present in listed stocks.\",\"PeriodicalId\":167061,\"journal\":{\"name\":\"Emerging Research on Monetary Policy, Banking, and Financial Markets\",\"volume\":\"113 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Research on Monetary Policy, Banking, and Financial Markets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-5225-9269-3.ch013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Research on Monetary Policy, Banking, and Financial Markets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-9269-3.ch013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling S&P Bombay Stock Exchange BANKEX Index Volatility Patterns Using GARCH Model
The main objective of this chapter is to estimate volatility patterns in the case of S&P Bombay Stock Exchange (BSE) BANKEX index in India. In recent past, the Indian banking sector was one of the fastest-growing industries and all major banks have been included in S&P BANKEX index as index benchmark constituent companies. The financial econometric framework is based on asymmetric GARCH (1, 1) model which is performed in order to capture asymmetric volatility clustering and leptokurtosis. Data time lag is considered from the first transaction day of January 2002 to last transaction day of June 2014. The empirical results revealed the existence of volatility shocks in the selected time series and also volatility clustering. The volatility impact has generated highly positive clockwise and impacted actual stocks. Moreover, the empirical findings reveal that the BANKEX index grown over 17 times in 12 years and volatility returns have been found present in listed stocks.