基于回声状态网络分类器的高效乳腺癌诊断计算机辅助决策支持系统

S. Wajid, A. Hussain, B. Luo
{"title":"基于回声状态网络分类器的高效乳腺癌诊断计算机辅助决策支持系统","authors":"S. Wajid, A. Hussain, B. Luo","doi":"10.1109/CICARE.2014.7007829","DOIUrl":null,"url":null,"abstract":"The paper presents Echo State Network (ESN) as classifier to diagnose the abnormalities in mammogram images. Abnormalities in mammograms can be of different types. An efficient system which can handle these abnormalities and draw correct diagnosis is vital. We experimented with wavelet and Local Energy based Shape Histogram (LESH) features combined with Echo State Network classifier. The suggested system produces high classification accuracy of 98% as well as high sensitivity and specificity rates. We compared the performance of ESN with Support Vector Machine (SVM) and other classifiers and results generated indicate that ESN can compete with benchmark classifier and in some cases beat them. The high rate of Sensitivity and Specificity also signifies the power of ESN classifier to detect positive and negative case correctly.","PeriodicalId":120730,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Healthcare and e-health (CICARE)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An efficient Computer Aided Decision Support System for breast cancer diagnosis using Echo State Network classifier\",\"authors\":\"S. Wajid, A. Hussain, B. Luo\",\"doi\":\"10.1109/CICARE.2014.7007829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents Echo State Network (ESN) as classifier to diagnose the abnormalities in mammogram images. Abnormalities in mammograms can be of different types. An efficient system which can handle these abnormalities and draw correct diagnosis is vital. We experimented with wavelet and Local Energy based Shape Histogram (LESH) features combined with Echo State Network classifier. The suggested system produces high classification accuracy of 98% as well as high sensitivity and specificity rates. We compared the performance of ESN with Support Vector Machine (SVM) and other classifiers and results generated indicate that ESN can compete with benchmark classifier and in some cases beat them. The high rate of Sensitivity and Specificity also signifies the power of ESN classifier to detect positive and negative case correctly.\",\"PeriodicalId\":120730,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Healthcare and e-health (CICARE)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Healthcare and e-health (CICARE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICARE.2014.7007829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Healthcare and e-health (CICARE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICARE.2014.7007829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出回声状态网络(回声状态网络,回声状态网络)作为分类器来诊断乳房x线图像中的异常。乳房x光检查中的异常可分为不同类型。一个能够处理这些异常并作出正确诊断的有效系统至关重要。我们将小波和基于局部能量的形状直方图(LESH)特征结合回声状态网络分类器进行了实验。该系统的分类准确率高达98%,具有较高的灵敏度和特异性。我们将回声状态网络与支持向量机(SVM)和其他分类器的性能进行了比较,结果表明回声状态网络可以与基准分类器竞争,在某些情况下甚至可以击败它们。高的灵敏度和特异性也表明了回声状态网络分类器正确检测阳性和阴性病例的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient Computer Aided Decision Support System for breast cancer diagnosis using Echo State Network classifier
The paper presents Echo State Network (ESN) as classifier to diagnose the abnormalities in mammogram images. Abnormalities in mammograms can be of different types. An efficient system which can handle these abnormalities and draw correct diagnosis is vital. We experimented with wavelet and Local Energy based Shape Histogram (LESH) features combined with Echo State Network classifier. The suggested system produces high classification accuracy of 98% as well as high sensitivity and specificity rates. We compared the performance of ESN with Support Vector Machine (SVM) and other classifiers and results generated indicate that ESN can compete with benchmark classifier and in some cases beat them. The high rate of Sensitivity and Specificity also signifies the power of ESN classifier to detect positive and negative case correctly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信