在微观层面人口普查分解中使用基于地址的非对称映射的好处

Denis Reiter, Mathias Jehling, R. Hecht
{"title":"在微观层面人口普查分解中使用基于地址的非对称映射的好处","authors":"Denis Reiter, Mathias Jehling, R. Hecht","doi":"10.5194/agile-giss-4-38-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Dasymetric mapping is a well-known technique when attempting to refine census data spatially and/or temporally. Existing approaches in micro-level census disaggregation make use of building areas or volumes in the mapping process. In an empirical error comparison it is shown that using additional address data rather than only building footprints or 3D models can substantially reduce dislocation of residential population. We propose the use of address points as a geometric representation unit for a more refined census disaggregation method in the future.\n","PeriodicalId":116168,"journal":{"name":"AGILE: GIScience Series","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benefits of using address-based dasymetric mapping in micro-level census disaggregation\",\"authors\":\"Denis Reiter, Mathias Jehling, R. Hecht\",\"doi\":\"10.5194/agile-giss-4-38-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Dasymetric mapping is a well-known technique when attempting to refine census data spatially and/or temporally. Existing approaches in micro-level census disaggregation make use of building areas or volumes in the mapping process. In an empirical error comparison it is shown that using additional address data rather than only building footprints or 3D models can substantially reduce dislocation of residential population. We propose the use of address points as a geometric representation unit for a more refined census disaggregation method in the future.\\n\",\"PeriodicalId\":116168,\"journal\":{\"name\":\"AGILE: GIScience Series\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AGILE: GIScience Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/agile-giss-4-38-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGILE: GIScience Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/agile-giss-4-38-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要当试图在空间和/或时间上细化人口普查数据时,非对称映射是一种众所周知的技术。微观人口普查分类的现有方法在制图过程中利用建筑面积或体积。经验误差比较表明,使用额外的地址数据,而不是仅仅使用建筑足迹或三维模型,可以大大减少居住人口的错位。我们建议在未来使用地址点作为更精细的人口普查分解方法的几何表示单位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Benefits of using address-based dasymetric mapping in micro-level census disaggregation
Abstract. Dasymetric mapping is a well-known technique when attempting to refine census data spatially and/or temporally. Existing approaches in micro-level census disaggregation make use of building areas or volumes in the mapping process. In an empirical error comparison it is shown that using additional address data rather than only building footprints or 3D models can substantially reduce dislocation of residential population. We propose the use of address points as a geometric representation unit for a more refined census disaggregation method in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信