链接数据管理的数据库技术

A. Harth, K. Hose, Ralf Schenkel
{"title":"链接数据管理的数据库技术","authors":"A. Harth, K. Hose, Ralf Schenkel","doi":"10.1145/2213836.2213909","DOIUrl":null,"url":null,"abstract":"Linked Data refers to data published in accordance with a number of principles rooted in web standards. In the past few years we have witnessed a tremendous growth in Linked Data publishing on the web, leading to tens of billions of data items published online. Querying the data is a key functionality required to make use of the wealth of rich interlinked data. The goal of the tutorial is to introduce, motivate, and detail techniques for querying heterogeneous structured data from across the web. Our tutorial aims to introduce database researchers and practitioners to the new publishing paradigm on the web, and show how the abundance of data published as Linked Data can serve as fertile ground for database research and experimentation. As such, the tutorial focuses on applying database techniques to processing Linked Data, such as optimized indexing and query processing methods in the centralized setting as well as distributed approaches for querying. At the same time, we make the connection from Linked Data best practices to established technologies in distributed databases and the concept of Dataspaces and show differences as well as commonalities between the fields.","PeriodicalId":212616,"journal":{"name":"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Database techniques for linked data management\",\"authors\":\"A. Harth, K. Hose, Ralf Schenkel\",\"doi\":\"10.1145/2213836.2213909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linked Data refers to data published in accordance with a number of principles rooted in web standards. In the past few years we have witnessed a tremendous growth in Linked Data publishing on the web, leading to tens of billions of data items published online. Querying the data is a key functionality required to make use of the wealth of rich interlinked data. The goal of the tutorial is to introduce, motivate, and detail techniques for querying heterogeneous structured data from across the web. Our tutorial aims to introduce database researchers and practitioners to the new publishing paradigm on the web, and show how the abundance of data published as Linked Data can serve as fertile ground for database research and experimentation. As such, the tutorial focuses on applying database techniques to processing Linked Data, such as optimized indexing and query processing methods in the centralized setting as well as distributed approaches for querying. At the same time, we make the connection from Linked Data best practices to established technologies in distributed databases and the concept of Dataspaces and show differences as well as commonalities between the fields.\",\"PeriodicalId\":212616,\"journal\":{\"name\":\"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2213836.2213909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2213836.2213909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

关联数据是指根据植根于web标准的若干原则发布的数据。在过去的几年里,我们见证了网络上关联数据发布的巨大增长,导致数百亿数据项在线发布。查询数据是利用丰富的互连数据所需的关键功能。本教程的目标是介绍、激励和详细介绍从整个web查询异构结构化数据的技术。我们的教程旨在向数据库研究人员和实践者介绍网络上新的发布范式,并展示作为关联数据发布的大量数据如何为数据库研究和实验提供肥沃的土壤。因此,本教程侧重于将数据库技术应用于处理关联数据,例如集中式设置中的优化索引和查询处理方法,以及用于查询的分布式方法。同时,我们将关联数据的最佳实践与分布式数据库中的现有技术和数据空间的概念联系起来,并展示了这些领域之间的差异和共性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Database techniques for linked data management
Linked Data refers to data published in accordance with a number of principles rooted in web standards. In the past few years we have witnessed a tremendous growth in Linked Data publishing on the web, leading to tens of billions of data items published online. Querying the data is a key functionality required to make use of the wealth of rich interlinked data. The goal of the tutorial is to introduce, motivate, and detail techniques for querying heterogeneous structured data from across the web. Our tutorial aims to introduce database researchers and practitioners to the new publishing paradigm on the web, and show how the abundance of data published as Linked Data can serve as fertile ground for database research and experimentation. As such, the tutorial focuses on applying database techniques to processing Linked Data, such as optimized indexing and query processing methods in the centralized setting as well as distributed approaches for querying. At the same time, we make the connection from Linked Data best practices to established technologies in distributed databases and the concept of Dataspaces and show differences as well as commonalities between the fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信