利用神经网络控制疟疾

Joseph Livesey, D. Wojtczak
{"title":"利用神经网络控制疟疾","authors":"Joseph Livesey, D. Wojtczak","doi":"10.1109/CIBCB49929.2021.9562789","DOIUrl":null,"url":null,"abstract":"In this paper we build a neural network model to predict prevalence of malaria for a given geographic location and year. We report on our experience of building the most suitable neural network architecture for this problem. We show that both utilizing dropout and Adam optimizer in the network training process is very effective and can lead to a precise model without overfitting issues. Incorporating rainfall data leads to a significant improvement in the precision of the model, highlighting the fact that this is an important factor in the spread of malaria. We then utilize the selected best neural network to predict the outcome of eradicating malaria at given locations. This can help to decide where to use limited resources, like vaccines or insecticides, for the largest possible impact in malaria control.","PeriodicalId":163387,"journal":{"name":"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Neural Networks in Malaria Control\",\"authors\":\"Joseph Livesey, D. Wojtczak\",\"doi\":\"10.1109/CIBCB49929.2021.9562789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we build a neural network model to predict prevalence of malaria for a given geographic location and year. We report on our experience of building the most suitable neural network architecture for this problem. We show that both utilizing dropout and Adam optimizer in the network training process is very effective and can lead to a precise model without overfitting issues. Incorporating rainfall data leads to a significant improvement in the precision of the model, highlighting the fact that this is an important factor in the spread of malaria. We then utilize the selected best neural network to predict the outcome of eradicating malaria at given locations. This can help to decide where to use limited resources, like vaccines or insecticides, for the largest possible impact in malaria control.\",\"PeriodicalId\":163387,\"journal\":{\"name\":\"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB49929.2021.9562789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB49929.2021.9562789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们建立了一个神经网络模型来预测给定地理位置和年份的疟疾患病率。我们报告了我们为这个问题构建最合适的神经网络架构的经验。我们表明,在网络训练过程中使用dropout和Adam优化器都是非常有效的,并且可以导致没有过拟合问题的精确模型。纳入降雨数据可以显著提高模型的精度,突出表明这是疟疾传播的一个重要因素。然后,我们利用选定的最佳神经网络来预测在给定地点根除疟疾的结果。这有助于决定在何处使用疫苗或杀虫剂等有限资源,以便在疟疾控制方面发挥最大的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging Neural Networks in Malaria Control
In this paper we build a neural network model to predict prevalence of malaria for a given geographic location and year. We report on our experience of building the most suitable neural network architecture for this problem. We show that both utilizing dropout and Adam optimizer in the network training process is very effective and can lead to a precise model without overfitting issues. Incorporating rainfall data leads to a significant improvement in the precision of the model, highlighting the fact that this is an important factor in the spread of malaria. We then utilize the selected best neural network to predict the outcome of eradicating malaria at given locations. This can help to decide where to use limited resources, like vaccines or insecticides, for the largest possible impact in malaria control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信