基于少标签的移动机器人室内可穿越性估计

C. Sevastopoulos, Michail Theofanidis, Mohammad Zaki Zadeh, Sneh Acharya, S. Konstantopoulos, V. Karkaletsis, F. Makedon
{"title":"基于少标签的移动机器人室内可穿越性估计","authors":"C. Sevastopoulos, Michail Theofanidis, Mohammad Zaki Zadeh, Sneh Acharya, S. Konstantopoulos, V. Karkaletsis, F. Makedon","doi":"10.1109/IRC55401.2022.00059","DOIUrl":null,"url":null,"abstract":"We present a method for binary (go/no-go) indoors traversability estimation from 2D images. Our method exploits the power of a pre-trained Vision Transformer (ViT) which we fine-tune on our own dataset. We conduct experiments using a mobile robotic platform to gather image data. Our fine-tuning approach includes the use of a pre-trained Vision Transformer (ViT) en route towards developing a semi-supervised deep learning technique to enhance indoor traversability estimation for scenarios where only a small amount of data is available. We evaluate the accuracy and generalization power of our method against well-established state-of-the-art deep architectures for image classification such as ResNet, and show improved performance.","PeriodicalId":282759,"journal":{"name":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Indoors Traversability Estimation with Less Labels for Mobile Robots\",\"authors\":\"C. Sevastopoulos, Michail Theofanidis, Mohammad Zaki Zadeh, Sneh Acharya, S. Konstantopoulos, V. Karkaletsis, F. Makedon\",\"doi\":\"10.1109/IRC55401.2022.00059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method for binary (go/no-go) indoors traversability estimation from 2D images. Our method exploits the power of a pre-trained Vision Transformer (ViT) which we fine-tune on our own dataset. We conduct experiments using a mobile robotic platform to gather image data. Our fine-tuning approach includes the use of a pre-trained Vision Transformer (ViT) en route towards developing a semi-supervised deep learning technique to enhance indoor traversability estimation for scenarios where only a small amount of data is available. We evaluate the accuracy and generalization power of our method against well-established state-of-the-art deep architectures for image classification such as ResNet, and show improved performance.\",\"PeriodicalId\":282759,\"journal\":{\"name\":\"2022 Sixth IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"209 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Sixth IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC55401.2022.00059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC55401.2022.00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于二维图像的二值(go/no-go)室内可穿越性估计方法。我们的方法利用了我们在自己的数据集上微调的预训练视觉转换器(ViT)的功能。我们使用移动机器人平台进行实验来收集图像数据。我们的微调方法包括在开发半监督深度学习技术的过程中使用预训练的视觉变压器(ViT),以增强只有少量数据可用的场景的室内可穿越性估计。我们评估了我们的方法的准确性和泛化能力,对比了公认的最先进的图像分类深度架构,如ResNet,并显示出改进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indoors Traversability Estimation with Less Labels for Mobile Robots
We present a method for binary (go/no-go) indoors traversability estimation from 2D images. Our method exploits the power of a pre-trained Vision Transformer (ViT) which we fine-tune on our own dataset. We conduct experiments using a mobile robotic platform to gather image data. Our fine-tuning approach includes the use of a pre-trained Vision Transformer (ViT) en route towards developing a semi-supervised deep learning technique to enhance indoor traversability estimation for scenarios where only a small amount of data is available. We evaluate the accuracy and generalization power of our method against well-established state-of-the-art deep architectures for image classification such as ResNet, and show improved performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信