基于径向基函数神经网络的单孔径多波束阵列天线

B. R. S. Reddy, D. Vakula
{"title":"基于径向基函数神经网络的单孔径多波束阵列天线","authors":"B. R. S. Reddy, D. Vakula","doi":"10.1109/IMARC.2015.7411450","DOIUrl":null,"url":null,"abstract":"In the present work, an optimized approach is described in predicting the current excitations of a planar array geometry for obtaining multiple beam widths in a single aperture using Radial Basis Function Neural Network (RBFNN). The approach utilizes current distributions of uniform, binomial and triangular forms for a 5×5 planar array. The radiation pattern values are given as input to the neural network. The output of the neural network is current excitations of the planar antenna array elements. RBFNN is initially trained with the input-output data pairs and tested and explored for the estimation of current excitations. The network showed a high success rate.","PeriodicalId":307742,"journal":{"name":"2015 IEEE MTT-S International Microwave and RF Conference (IMaRC)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Single aperture multiple beams of array antenna using Radial Basis Function Neural Network\",\"authors\":\"B. R. S. Reddy, D. Vakula\",\"doi\":\"10.1109/IMARC.2015.7411450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work, an optimized approach is described in predicting the current excitations of a planar array geometry for obtaining multiple beam widths in a single aperture using Radial Basis Function Neural Network (RBFNN). The approach utilizes current distributions of uniform, binomial and triangular forms for a 5×5 planar array. The radiation pattern values are given as input to the neural network. The output of the neural network is current excitations of the planar antenna array elements. RBFNN is initially trained with the input-output data pairs and tested and explored for the estimation of current excitations. The network showed a high success rate.\",\"PeriodicalId\":307742,\"journal\":{\"name\":\"2015 IEEE MTT-S International Microwave and RF Conference (IMaRC)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE MTT-S International Microwave and RF Conference (IMaRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMARC.2015.7411450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE MTT-S International Microwave and RF Conference (IMaRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMARC.2015.7411450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本工作中,描述了一种利用径向基函数神经网络(RBFNN)预测平面阵列几何形状的电流激励的优化方法,用于在单个孔径中获得多个光束宽度。该方法利用电流分布的均匀,二项和三角形形式的5×5平面阵列。将辐射方向图值作为神经网络的输入。神经网络的输出是平面天线阵列单元的电流激励。RBFNN最初使用输入输出数据对进行训练,并对当前激励的估计进行测试和探索。该网络显示出很高的成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single aperture multiple beams of array antenna using Radial Basis Function Neural Network
In the present work, an optimized approach is described in predicting the current excitations of a planar array geometry for obtaining multiple beam widths in a single aperture using Radial Basis Function Neural Network (RBFNN). The approach utilizes current distributions of uniform, binomial and triangular forms for a 5×5 planar array. The radiation pattern values are given as input to the neural network. The output of the neural network is current excitations of the planar antenna array elements. RBFNN is initially trained with the input-output data pairs and tested and explored for the estimation of current excitations. The network showed a high success rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信