Georgios M. Santipantakis, Konstantinos I. Kotis, G. Vouros
{"title":"基于本体的海事领域事件识别数据集成","authors":"Georgios M. Santipantakis, Konstantinos I. Kotis, G. Vouros","doi":"10.1145/2797115.2797133","DOIUrl":null,"url":null,"abstract":"Recent environmental disasters at sea have highlighted the need for efficient maritime surveillance and incident management. Currently, maritime navigation technology automatically provides real time data from vessels, which together with historical data, can be processed in an integrated way to detect complex events and support decision making. Ontology-Based Data Access (OBDA) frameworks, can be employed to access data towards this effort. However the heterogeneity of data in disparate sources make data integration a challenging task. In this paper we report on our efforts to implement a scalable system for integrating data from disparate data sources by means of existing OBDA frameworks and distributed E -- SHIQ knowledge bases, towards supporting complex event recognition. We present two versions of the implemented system, and the lessons learned from this effort.","PeriodicalId":386229,"journal":{"name":"Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Ontology-Based Data Integration for Event Recognition in the Maritime Domain\",\"authors\":\"Georgios M. Santipantakis, Konstantinos I. Kotis, G. Vouros\",\"doi\":\"10.1145/2797115.2797133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent environmental disasters at sea have highlighted the need for efficient maritime surveillance and incident management. Currently, maritime navigation technology automatically provides real time data from vessels, which together with historical data, can be processed in an integrated way to detect complex events and support decision making. Ontology-Based Data Access (OBDA) frameworks, can be employed to access data towards this effort. However the heterogeneity of data in disparate sources make data integration a challenging task. In this paper we report on our efforts to implement a scalable system for integrating data from disparate data sources by means of existing OBDA frameworks and distributed E -- SHIQ knowledge bases, towards supporting complex event recognition. We present two versions of the implemented system, and the lessons learned from this effort.\",\"PeriodicalId\":386229,\"journal\":{\"name\":\"Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2797115.2797133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2797115.2797133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ontology-Based Data Integration for Event Recognition in the Maritime Domain
Recent environmental disasters at sea have highlighted the need for efficient maritime surveillance and incident management. Currently, maritime navigation technology automatically provides real time data from vessels, which together with historical data, can be processed in an integrated way to detect complex events and support decision making. Ontology-Based Data Access (OBDA) frameworks, can be employed to access data towards this effort. However the heterogeneity of data in disparate sources make data integration a challenging task. In this paper we report on our efforts to implement a scalable system for integrating data from disparate data sources by means of existing OBDA frameworks and distributed E -- SHIQ knowledge bases, towards supporting complex event recognition. We present two versions of the implemented system, and the lessons learned from this effort.