基于本体的海事领域事件识别数据集成

Georgios M. Santipantakis, Konstantinos I. Kotis, G. Vouros
{"title":"基于本体的海事领域事件识别数据集成","authors":"Georgios M. Santipantakis, Konstantinos I. Kotis, G. Vouros","doi":"10.1145/2797115.2797133","DOIUrl":null,"url":null,"abstract":"Recent environmental disasters at sea have highlighted the need for efficient maritime surveillance and incident management. Currently, maritime navigation technology automatically provides real time data from vessels, which together with historical data, can be processed in an integrated way to detect complex events and support decision making. Ontology-Based Data Access (OBDA) frameworks, can be employed to access data towards this effort. However the heterogeneity of data in disparate sources make data integration a challenging task. In this paper we report on our efforts to implement a scalable system for integrating data from disparate data sources by means of existing OBDA frameworks and distributed E -- SHIQ knowledge bases, towards supporting complex event recognition. We present two versions of the implemented system, and the lessons learned from this effort.","PeriodicalId":386229,"journal":{"name":"Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Ontology-Based Data Integration for Event Recognition in the Maritime Domain\",\"authors\":\"Georgios M. Santipantakis, Konstantinos I. Kotis, G. Vouros\",\"doi\":\"10.1145/2797115.2797133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent environmental disasters at sea have highlighted the need for efficient maritime surveillance and incident management. Currently, maritime navigation technology automatically provides real time data from vessels, which together with historical data, can be processed in an integrated way to detect complex events and support decision making. Ontology-Based Data Access (OBDA) frameworks, can be employed to access data towards this effort. However the heterogeneity of data in disparate sources make data integration a challenging task. In this paper we report on our efforts to implement a scalable system for integrating data from disparate data sources by means of existing OBDA frameworks and distributed E -- SHIQ knowledge bases, towards supporting complex event recognition. We present two versions of the implemented system, and the lessons learned from this effort.\",\"PeriodicalId\":386229,\"journal\":{\"name\":\"Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2797115.2797133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2797115.2797133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

最近的海上环境灾害突出了有效的海上监视和事件管理的必要性。目前,海上导航技术可以自动提供船舶的实时数据,并与历史数据一起进行综合处理,以检测复杂事件并支持决策。可以使用基于本体的数据访问(OBDA)框架来访问数据。然而,异构数据源中数据的异构性使得数据集成成为一项具有挑战性的任务。在本文中,我们报告了我们为实现一个可扩展系统所做的努力,该系统通过现有的OBDA框架和分布式E - SHIQ知识库来集成来自不同数据源的数据,以支持复杂事件识别。我们给出了实现系统的两个版本,以及从中吸取的经验教训。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ontology-Based Data Integration for Event Recognition in the Maritime Domain
Recent environmental disasters at sea have highlighted the need for efficient maritime surveillance and incident management. Currently, maritime navigation technology automatically provides real time data from vessels, which together with historical data, can be processed in an integrated way to detect complex events and support decision making. Ontology-Based Data Access (OBDA) frameworks, can be employed to access data towards this effort. However the heterogeneity of data in disparate sources make data integration a challenging task. In this paper we report on our efforts to implement a scalable system for integrating data from disparate data sources by means of existing OBDA frameworks and distributed E -- SHIQ knowledge bases, towards supporting complex event recognition. We present two versions of the implemented system, and the lessons learned from this effort.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信