不存在一维展开图

M. Klawe
{"title":"不存在一维展开图","authors":"M. Klawe","doi":"10.1109/SFCS.1981.23","DOIUrl":null,"url":null,"abstract":"Expanding graphs are the basic building blocks used in constructions of graphs with special connectivity properties such as superconcentrators. The only known explicit method (Margulis[7], Gabber and Galil[5]) of constructing arbitrarily large expanding graphs with a linear number of edges, uses graphs whose edges are defined by a finite set of linear mappings restricted to a two-dimensional set, Zn × Zn, where Zn denotes the integers mod n. In this paper we prove that for any finite set of onedimensional linear mappings with rational coefficients, the graph they define by their restriction to Zn is not an expanding graph. We also show that shuffle exchange graphs can not be expanding graphs.","PeriodicalId":224735,"journal":{"name":"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1981-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Non-existence of one-dimensional expanding graphs\",\"authors\":\"M. Klawe\",\"doi\":\"10.1109/SFCS.1981.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Expanding graphs are the basic building blocks used in constructions of graphs with special connectivity properties such as superconcentrators. The only known explicit method (Margulis[7], Gabber and Galil[5]) of constructing arbitrarily large expanding graphs with a linear number of edges, uses graphs whose edges are defined by a finite set of linear mappings restricted to a two-dimensional set, Zn × Zn, where Zn denotes the integers mod n. In this paper we prove that for any finite set of onedimensional linear mappings with rational coefficients, the graph they define by their restriction to Zn is not an expanding graph. We also show that shuffle exchange graphs can not be expanding graphs.\",\"PeriodicalId\":224735,\"journal\":{\"name\":\"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1981-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1981.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1981.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

展开图是用于构造具有特殊连接属性(如超集中器)的图的基本构建块。唯一已知的显式方法(马古利斯[7],唠叨的人,加利尔[5])的构造任意大扩张图线性边数,使用图形的边缘是由一组有限的线性映射限制在一个二维集合,锌×锌、锌表示整数mod n。在本文中,我们证明了任何有限的一些与理性的系数,线性映射图定义的限制锌不是一个扩展图。我们还证明了shuffle交换图不能是展开图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-existence of one-dimensional expanding graphs
Expanding graphs are the basic building blocks used in constructions of graphs with special connectivity properties such as superconcentrators. The only known explicit method (Margulis[7], Gabber and Galil[5]) of constructing arbitrarily large expanding graphs with a linear number of edges, uses graphs whose edges are defined by a finite set of linear mappings restricted to a two-dimensional set, Zn × Zn, where Zn denotes the integers mod n. In this paper we prove that for any finite set of onedimensional linear mappings with rational coefficients, the graph they define by their restriction to Zn is not an expanding graph. We also show that shuffle exchange graphs can not be expanding graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信