植物叶片识别的高光谱成像技术

M. Kishore, S. B. Kulkarni
{"title":"植物叶片识别的高光谱成像技术","authors":"M. Kishore, S. B. Kulkarni","doi":"10.1109/ERECT.2015.7499014","DOIUrl":null,"url":null,"abstract":"Hyperspectral imaging is the procedure to gather and handle information across the electromagnetic spectrum. The fundamental objective of hyperspectral imaging is to achieve the spectrum for every pixel in the picture. The spectrum helps in computer vision, i.e., locating items, material detection or process discovery. This approach is constantly developing in the field of remote sensing applications. The wide spectrum range, offers a high spectral resolution, thus permitting the detection and understanding of the exterior and material components of the viewed image. Numerous elements, for example, defective imaging optics, climatic disturbances, optical brightening impacts and sensor noise cause the corruption of the procured image quality, making spatial determination amongst the costliest and hardest to improve in imaging frameworks. Blended pixels, i.e., pixels containing a blend of diverse materials, are normal in hyperspectral pictures due to such a requirement. In this work, we propose the use of the rich spectral data of hyperspectral images to resolve classification issues.","PeriodicalId":140556,"journal":{"name":"2015 International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT)","volume":"168 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Hyperspectral imaging technique for plant leaf identification\",\"authors\":\"M. Kishore, S. B. Kulkarni\",\"doi\":\"10.1109/ERECT.2015.7499014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral imaging is the procedure to gather and handle information across the electromagnetic spectrum. The fundamental objective of hyperspectral imaging is to achieve the spectrum for every pixel in the picture. The spectrum helps in computer vision, i.e., locating items, material detection or process discovery. This approach is constantly developing in the field of remote sensing applications. The wide spectrum range, offers a high spectral resolution, thus permitting the detection and understanding of the exterior and material components of the viewed image. Numerous elements, for example, defective imaging optics, climatic disturbances, optical brightening impacts and sensor noise cause the corruption of the procured image quality, making spatial determination amongst the costliest and hardest to improve in imaging frameworks. Blended pixels, i.e., pixels containing a blend of diverse materials, are normal in hyperspectral pictures due to such a requirement. In this work, we propose the use of the rich spectral data of hyperspectral images to resolve classification issues.\",\"PeriodicalId\":140556,\"journal\":{\"name\":\"2015 International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT)\",\"volume\":\"168 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ERECT.2015.7499014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ERECT.2015.7499014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

高光谱成像是收集和处理电磁波谱信息的过程。高光谱成像的基本目标是实现图像中每个像素的光谱。光谱有助于计算机视觉,即定位物品,材料检测或过程发现。这种方法在遥感领域的应用正在不断发展。广泛的光谱范围,提供了一个高光谱分辨率,从而允许检测和理解的外部和材料成分的观察图像。许多因素,例如,有缺陷的成像光学,气候干扰,光学增亮影响和传感器噪声会导致所获得的图像质量的损坏,使空间确定成为成像框架中最昂贵和最难改进的因素之一。由于这样的要求,混合像素,即包含多种材料混合的像素,在高光谱图像中是正常的。在这项工作中,我们提出利用高光谱图像丰富的光谱数据来解决分类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperspectral imaging technique for plant leaf identification
Hyperspectral imaging is the procedure to gather and handle information across the electromagnetic spectrum. The fundamental objective of hyperspectral imaging is to achieve the spectrum for every pixel in the picture. The spectrum helps in computer vision, i.e., locating items, material detection or process discovery. This approach is constantly developing in the field of remote sensing applications. The wide spectrum range, offers a high spectral resolution, thus permitting the detection and understanding of the exterior and material components of the viewed image. Numerous elements, for example, defective imaging optics, climatic disturbances, optical brightening impacts and sensor noise cause the corruption of the procured image quality, making spatial determination amongst the costliest and hardest to improve in imaging frameworks. Blended pixels, i.e., pixels containing a blend of diverse materials, are normal in hyperspectral pictures due to such a requirement. In this work, we propose the use of the rich spectral data of hyperspectral images to resolve classification issues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信