用于固定放射性液体废物中放射性核素的混合复合材料

Mamytbekov Gк
{"title":"用于固定放射性液体废物中放射性核素的混合复合材料","authors":"Mamytbekov Gк","doi":"10.54026/jmms/1053","DOIUrl":null,"url":null,"abstract":"The biphasic hybrid composite materials for immobilization and fixation of radionuclides of the Liquid Radioactive Waste (LRW) of the research water-water reactor KIR WWR-K have been studied. It was found that the hybrid compositions have a high synergistic effect regard to the sorption of radionuclides, especially 137Cs+ and 134Cs+ . The distribution coefficient of cesium radionuclides in the composite materials are 2 times higher in comparison with the those sorption activity in the mineral matrix. It has been established that the sorption of radionuclides by two-phase hybrid compositions is carried out by a combination of three mechanisms. Firstly, due to the electrostatic binding reaction between the functional groups of sorbents and metal ions stabilized by the system of coordination bonds with electron-donating nitrogen and oxygen atoms of the amino and carbonyl groups of the polymer matrix. Secondly, as a result of ion exchange between counterions of the mineral matrix and radionuclides ions in the environmental solution. Finally, due to the superequimolar absorption of radionuclides as a result of deformation of the crystal lattice of mineral fillers of the polymer matrix of bentonite and copper ferrocyanide, which increases their pore size. It has been shown that biphasic hybrid composite materials have an increased mechanical and radiation resistance while retaining elasticity even at high doses of electron irradiation, at which in despite on a noticeable decrease the value of deformation there is no significant decline in their compressive strength. The obtained information on the mechanism of binding of biphasic hybrid composite materials with various metal ions makes it possible to synthesize new classes of materials for selective sorption of certain types of radionuclides in the body of mineral and polymer matrices. This will allow us to use these materials as a highly effective sorption materials with a synergetic effect for the detection, identification, immobilization and fixation of LRW radionuclides.","PeriodicalId":199420,"journal":{"name":"Journal of Mineral and Material Science (JMMS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybrid Composite Materials for Immobilization of Radionuclides in Liquid Radioactive Waste\",\"authors\":\"Mamytbekov Gк\",\"doi\":\"10.54026/jmms/1053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The biphasic hybrid composite materials for immobilization and fixation of radionuclides of the Liquid Radioactive Waste (LRW) of the research water-water reactor KIR WWR-K have been studied. It was found that the hybrid compositions have a high synergistic effect regard to the sorption of radionuclides, especially 137Cs+ and 134Cs+ . The distribution coefficient of cesium radionuclides in the composite materials are 2 times higher in comparison with the those sorption activity in the mineral matrix. It has been established that the sorption of radionuclides by two-phase hybrid compositions is carried out by a combination of three mechanisms. Firstly, due to the electrostatic binding reaction between the functional groups of sorbents and metal ions stabilized by the system of coordination bonds with electron-donating nitrogen and oxygen atoms of the amino and carbonyl groups of the polymer matrix. Secondly, as a result of ion exchange between counterions of the mineral matrix and radionuclides ions in the environmental solution. Finally, due to the superequimolar absorption of radionuclides as a result of deformation of the crystal lattice of mineral fillers of the polymer matrix of bentonite and copper ferrocyanide, which increases their pore size. It has been shown that biphasic hybrid composite materials have an increased mechanical and radiation resistance while retaining elasticity even at high doses of electron irradiation, at which in despite on a noticeable decrease the value of deformation there is no significant decline in their compressive strength. The obtained information on the mechanism of binding of biphasic hybrid composite materials with various metal ions makes it possible to synthesize new classes of materials for selective sorption of certain types of radionuclides in the body of mineral and polymer matrices. This will allow us to use these materials as a highly effective sorption materials with a synergetic effect for the detection, identification, immobilization and fixation of LRW radionuclides.\",\"PeriodicalId\":199420,\"journal\":{\"name\":\"Journal of Mineral and Material Science (JMMS)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mineral and Material Science (JMMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54026/jmms/1053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mineral and Material Science (JMMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54026/jmms/1053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了两相杂化复合材料对研究用水-水堆(KIR wwrk - k)液态放射性废物(LRW)放射性核素的固定化和固定。杂化组合物对放射性核素的吸附具有较高的协同效应,特别是对137Cs+和134Cs+的吸附。铯核素在复合材料中的分布系数比在矿物基质中的吸附活性高2倍。已经确定,两相杂化组合物对放射性核素的吸附是由三种机制的组合进行的。首先,由于吸附剂的官能团与金属离子之间的静电结合反应,通过与聚合物基体中氨基和羰基的供电子氮原子和氧原子的配位键体系稳定。其次,由于矿物基质的反离子与环境溶液中的放射性核素离子之间的离子交换。最后,由于放射性核素的超等摩尔吸收导致膨润土和亚铁氰化铜的聚合物基体的矿物填料的晶格变形,从而增大了它们的孔径。研究表明,即使在高剂量的电子辐照下,双相杂化复合材料的力学和抗辐射性能也有所提高,同时保持弹性,在高剂量的电子辐照下,尽管变形值明显降低,但其抗压强度没有明显下降。所获得的关于双相杂化复合材料与各种金属离子结合机理的信息,使合成在矿物和聚合物基体中选择性吸附某些类型放射性核素的新型材料成为可能。这将使我们能够使用这些材料作为一种高效的吸附材料,具有协同效应,用于低放射性核素的检测、鉴定、固定和固定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Composite Materials for Immobilization of Radionuclides in Liquid Radioactive Waste
The biphasic hybrid composite materials for immobilization and fixation of radionuclides of the Liquid Radioactive Waste (LRW) of the research water-water reactor KIR WWR-K have been studied. It was found that the hybrid compositions have a high synergistic effect regard to the sorption of radionuclides, especially 137Cs+ and 134Cs+ . The distribution coefficient of cesium radionuclides in the composite materials are 2 times higher in comparison with the those sorption activity in the mineral matrix. It has been established that the sorption of radionuclides by two-phase hybrid compositions is carried out by a combination of three mechanisms. Firstly, due to the electrostatic binding reaction between the functional groups of sorbents and metal ions stabilized by the system of coordination bonds with electron-donating nitrogen and oxygen atoms of the amino and carbonyl groups of the polymer matrix. Secondly, as a result of ion exchange between counterions of the mineral matrix and radionuclides ions in the environmental solution. Finally, due to the superequimolar absorption of radionuclides as a result of deformation of the crystal lattice of mineral fillers of the polymer matrix of bentonite and copper ferrocyanide, which increases their pore size. It has been shown that biphasic hybrid composite materials have an increased mechanical and radiation resistance while retaining elasticity even at high doses of electron irradiation, at which in despite on a noticeable decrease the value of deformation there is no significant decline in their compressive strength. The obtained information on the mechanism of binding of biphasic hybrid composite materials with various metal ions makes it possible to synthesize new classes of materials for selective sorption of certain types of radionuclides in the body of mineral and polymer matrices. This will allow us to use these materials as a highly effective sorption materials with a synergetic effect for the detection, identification, immobilization and fixation of LRW radionuclides.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信